
IL222X SoC Master Thesis 5-Jan-2014
Final Report 1/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

KTH Royal Institute of Technology

VHF/UHF Uplink
Solutions for Remote
Wireless Sensor
Networks
The purpose of this thesis was to compare al ternative wireless links for transfer of data from sink
motes of remote wireless sensor networks to a central reposi tory. We discussed a few different
protocol stacks to be implemented in the WSN uplink gateway and a few implementation
environments based on open source software and low-power hardware. To facilitate measurements
and experimental validation, some of the alternatives have been implemented. Experiments have
been made using radio amateur frequencies, the 144 MHz band (VHF) and the 434 MHz band (UHF).

The parameters s tudied include throughput, range, power-requirements , portabili ty and
compatibility with s tandards.

Alp Sayin
05 Jan 2014

IL222X SoC Master Thesis 5-Jan-2014
Final Report 2/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Abstract

The purpose of this thesis was to compare alternative wireless links for transfer of data from sink
motes of remote wireless sensor networks to a central repository. A few different protocol stacks to be
implemented in the WSN (Wireless Sensor Network) uplink gateway and along with them a few
implementation environments based on open source software and low-power hardware were
discussed. To facilitate measurements and experimental validation, some of the alternatives have been
implemented. Experiments have been made using two of the amateur radio bands, the 144 MHz band
(VHF) and the 433 MHz band (UHF). The parameters studied include throughput, range, power-
requirements, portability and compatibility with standards.

Using different protocol stacks, different bands and sometimes different hardware 5 solutions were
designed, implemented, tested and experimented with. Namely these solutions are called Radiotftp,
Radiotftp_process, Radiotunnel, Soundmodem and APRX in this thesis.

After the implementation phase, there was an open-field experimentation to measure the
aforementioned parameters. The tests were conducted in Riddarholmen, Stockholm of Sweden. These
open-field experiments helped us obtain real-life measurements about power, throughput, stability etc.
Experiments were conducted in a range of from a minimum of 2 meters to a maximum of 2.1 kilometers
with some of the solutions.

In the end, some of these solutions proved themselves to be viable for the purpose of data
communications for remote wireless sensor networks. Radiotftp gave the best throughput in both bands
where it proved itself to be difficult to develop further applications. Radiotftp_process removed the
necessity for a Linux running gateway machine but it was unable to work with faster baud rates.
Radiotunnel opened up the path for a range of network applications to use radio links, but it also proved
that it was unstable. On the other hand Soundmodem and APRX which were based on standard and
open-source software proved that they were stable but rather slow. It was proven that every approach
to problem has its advantages and disadvantages from different aspects such as throughput, range,
power-requirements, portability and compatibility.

IL222X SoC Master Thesis 5-Jan-2014
Final Report 3/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Acknowledgements

First of all, I would like to thank my project supervisors Bjorn Pehrson and Robert Olsson. They were

the first people to introduce me to this interesting branch of wireless communications. Before this
project I -literally- had no idea such a world even existed. Being a radio amateur himself Bjorn was
always there to introduce me to new topics and technologies about the project. I was getting new
information almost every week and I am very thankful about it. On the other hand Robert always helped
me about the technical details, he taught me to ‘hack’ into the stuff that I didn’t know about. Later on, I
found out that this is the only tool that I’ll need in real life, whether it be research topics or company
projects.

Secondly, I would like to thank my examiner Hakan Olsson for his extended patience and
understanding during my last semesters. Although we couldn’t be in contact that much, I always felt his
support and belief for my success.

Finally, since this is the documentation of the end of my Master’s studies, I would like to thank to all
people who have somehow supported me during the years I’ve spent in Sweden. These people are my
family and my friends.

Shortly I would like to mention their names; my parents, Meral Sayin and Erol Sayin who have
supported me both financially and morally during my studies. They were the ones I held onto when I
thought of quitting for a couple of times. My friends from Turkey; Melih Cinalioglu, Berkay Karatan,
Berkay Balci and Burak Kilic, somehow they were always online whenever I needed an old friend to talk
to. They were my online companions during the long nights of studies. My friends in Sweden; Moysis
Tsamsakizoglou, Stefano Vignati, Theodor Stana, Bahar Palabiyik, Mert Karadogan and many more… In
my belief without these people my Sweden experience would be a total disaster. I owe it to them for all
the great times we had.

If I start writing all the names in my head, this part of the thesis would probably be longer than the
thesis itself, so I stop here. But people who have helped me even a little should consider themselves
thanked here with great gratitude.

All in all, I am very thankful to all the people who have somehow helped me or been there for me
during these years. Even though this thesis has my name on it, I owe it to them, so I humbly present it to
them.

Alp Sayin
May 2013

IL222X SoC Master Thesis 5-Jan-2014
Final Report 4/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Table of Contents

Acknowledgements ...2

Table of Contents ...4

List of Figures ...7

List of Tables ..8

Abbreviations ...9

Authors and Supervisors ... 10

1 Background ... 10

1.1 Wireless Sensor Network .. 10

1.2 Sensors .. 10

1.3 MCU and OS... 11

1.4 Inter-Node Communication .. 11

1.5 Sink node and Gateway .. 11

1.6 Uplink .. 11

2 Problem Statement .. 12

3 Related Work... 12

4 Goals... 12

5 Thesis Structure ... 13

6 Method ... 13

7 Theoretical Framework .. 13

7.1 Physical Link... 13

7.2 Data Link.. 14

7.3 Network Layer.. 14

7.4 Transport Layer .. 15

7.5 Application Layer.. 15

7.6 Hardware... 16

7.7 Metrics .. 16

8 Design Decisions .. 17

8.1 Predefined Decisions .. 17

8.2 Physical Layer... 17

8.3 Link Layer... 18

8.4 Network Layer.. 18

8.5 Transport Layer .. 18

8.6 Application Layer.. 19

IL222X SoC Master Thesis 5-Jan-2014
Final Report 5/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

8.7 Hardware... 20

9 Implementation Details .. 22

9.1 Radiotftp ... 22

9.2 Radiotftp_process .. 24

9.3 Radiotunnel ... 25

9.4 Soundmodem .. 27

9.5 APRS.. 31

10 Experiments .. 33

10.1 Experiment Plan ... 33

10.1.1 Experiments with radiotftp .. 33

10.1.2 Experiments with radio_tunnel & soundmodem ... 34

10.1.3 General Experiments with Bim2A and UHX1 ... 35

10.1.4 General Experiments for UHX1 (Optional) ... 35

10.2 Environment and Logging.. 36

11 Results .. 38

12 Conclusions ... 41

13 Future Work .. 43

14 References .. 44

15 Appendix A .. 48

15.1 Sources .. 48

16 Appendix B .. 49

16.1 State Machines and Code Segments .. 49

17 Appendix C .. 55

17.1 Event Log Format.. 55

18 Appendix D.. 56

18.1.1 Data Collected in 144 MHz Experiments (UHX1) .. 56

18.1.1.1 Single Packet Transaction Experiments (127 Bytes) .. 56

18.1.1.2 Many Packet Transaction Experiments (2 Kbytes) .. 59

18.1.2 Data Collected in 434 MHz Experiments ... 62

18.1.2.1 Single Packet Transaction Experiments (127 Bytes) .. 62

18.1.2.2 Many Packet Transaction Experiments (2Kbytes) ... 63

19 Appendix E .. 66

19.1 Schematics and PCB Designs ... 66

IL222X SoC Master Thesis 5-Jan-2014
Final Report 6/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

IL222X SoC Master Thesis 5-Jan-2014
Final Report 7/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

List of Figures

Figure 1 Resulting branches in the project after design decisions... 20
Figure 2 Resulting solutions after hardware decisions ... 22
Figure 3. System diagram for radiotftp solution .. 23
Figure 4 System diagram for radiotftp_process solution.. 24
Figure 5 Size footprint of Fibonacci application with radiotftp_process .. 25
Figure 6 System diagram for radio_tunnel solution ... 26
Figure 7 System diagram for soundmodem solution ... 27
Figure 8 Soundmodemconfig utility configuration options .. 28
Figure 9 Yaesu FT8900R Data port signals... 28
Figure 10 Audio leveler and PTT controller card.. 29
Figure 11 Soundmodemconfig utility channel settings .. 30
Figure 12 Simple audio leveler and push-to-talk circuit ... 30
Figure 13 System diagram for APRS solution... 31
Figure 14 Simple configuration file for aprx, ... 32
Figure 15 aprs_telemetrit usage .. 33
Figure 16 Map of Gamla Stan Experiments ... 37
Figure 17 Transfer time plots for single packet delivery... 38
Figure 18 Transfer time plots for many-packet delivery... 38
Figure 19 Error rate plots for single packet delivery .. 39
Figure 20 Error rate plots for many-packet delivery .. 39
Figure 21 Bitrate plots for single packet delivery... 40
Figure 22 Bitrate plots for many-packet delivery... 40
Figure 23 Pseudocode showing the workflow of the IP stack implementation of radiotftp 49
Figure 24 Radiotftp_process Receive FSM diagram ... 50
Figure 25 Radiotftp_process send FSM diagram ... 51
Figure 26 Sample Contiki Process computing Fibonacci Series ... 52
Figure 27 Code segment from tun_alloc.c, demonstrating the opening procedure of a Tun device .. 53
Figure 28 Ping responder code segment from tunclient.c .. 54
Figure 29 A simple fix to disable automated telemetry messages of aprx. 54
Figure 30 A simple shell script to automate the transmission of data as APRS telemetry 54
Figure 31 Schematic for Uhx1 Interface Card .. 66
Figure 32 Schematic for Bim2A Interface Card .. 67
Figure 33 Component Side of Uhx1 Interface Card PCB ... 68
Figure 34 Solder side of Uhx1 Interface Card PCB ... 69

IL222X SoC Master Thesis 5-Jan-2014
Final Report 8/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

List of Tables

Table 1 Distances of test points to base station in Riddarholmen 36
Table 2 Average transfer times with minimum distance between transceivers 38
Table 3 RSSI readings from various locations with UHX1 and Bim2A 41
Table 4 Sample Log Format 55
Table 5 Sample event log extract 55
Table 6 Results of transfer experiments with 127 bytes in location 0. 56
Table 7 Results of transfer experiments with 127 bytes from location 1. 56
Table 8 Results of transfer experiments with 127 bytes from location 2. 57
Table 9 Results of transfer experiments with 127 bytes from location 3. 57
Table 10 Results of transfer experiments with 127 bytes from location 4. 57
Table 11 Results of transfer experiments with 127 bytes from location 5. 58
Table 12 Results of transfer experiments with 127 bytes from location 6. 58
Table 13 Results of transfer experiments with 127 bytes from location 7. 59
Table 14 Results of transfer experiments with 2 kbytes in location 0. 59
Table 15 Results of transfer experiments with 2 kbytes from location 1. 59
Table 16 Results of transfer experiments with 2 kbytes from location 2. 60
Table 17 Results of transfer experiments with 2 kbytes from location 3. 60
Table 18 Results of transfer experiments with 2 kbytes from location 4. 60
Table 19 Results of transfer experiments with 2 kbytes from location 5. 61
Table 20 Results of transfer experiments with 2 kbytes from location 6. 61
Table 21 Results of transfer experiments with 2 kbytes from location 7. 62
Table 22 Results of transfer experiments with 127 bytes in location 0. 62
Table 23 Results of transfer experiments with 127 bytes from location 1. 62
Table 24 Results of transfer experiments with 127 bytes from location 2. 63
Table 25 Results of transfer experiments with 127 bytes from location 4. 63
Table 26 Results of transfer experiments with 2 kbytes in location 0. 64
Table 27 Results of transfer experiments with 2 kbytes from location 1. 64
Table 28 Results of transfer experiments with 2 kbytes from location 2. 64
Table 29 Results of transfer experiments with 2 kbytes from location 4. 65

IL222X SoC Master Thesis 5-Jan-2014
Final Report 9/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Abbreviations

ADC – Analog to Digital Converter
AFSK – Audio Frequency Shift Keying
APRS – Automatic Packet Reporting System
CD – Carrier Detect
CSMA – Carrier Sense Multiple Access
FCS – Frame Check Sequence
FSK – Frequency Shifted Keying
FSM – Finite State Machine
IEEE – Institute of Electrical and Electronics Engineers
GNU - GNU’s not Unix
GPLv2 – General Public License version 2
GPRS – General Packet Radio Service
IP – Internet Protocol
KTH – Kungliga Tekniska Högskolan
MCU – Microcontroller Unit
MTU – Maximum Transmission Unit
NBFM – Narrow Band Frequency Modulation
NMT – Nordic Mobile Telephone
OS – Operating System
OSI – Open Systems Interconnection
RF – Radio Frequency
RSSI – Receive Signal Strength Indicator
SLIP – Serial Line IP
TCP – Transmission Control Protocol
TFTP – Trivial File Transfer Protocol
TNC – Terminal Node Controller
TSLab – Telecommunication System Laboratory
UART – Universal Asynchronous Receiver/Transmitter
UDP – User Datagram Protocol
UHF – Ultra High Frequency
UI – Unnumbered Information
VHF – Very High Frequency

IL222X SoC Master Thesis 5-Jan-2014
Final Report 10/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Authors and Supervisors

The main author of this thesis is Alp Sayin, who is a second year System-on-Chip Design student. All
thesis work was completed by him. This includes codes, documentations, reports and hardware designs.
The thesis was built on previous works on this field from sources like published papers and amateur
radio community.

The supervisors are Robert Olsson and Björn Pehrson from KTH. The examiner is Hakan Olsson from
KTH.

1 Background

The context of this thesis is the work at TSLab on Open Wireless Sensor Networks for envi ronment
monitoring. The system under development include sensors for environment monitoring connected to a
sensor network node (mote), which can be interconnected to other similar motes to form a sensor
network. This network can be placed in a remote area, with at least one of the motes being a sink node,
i.e. connected to a gateway collecting the data and capable of delivering it via some sort of upstream
connection to a central data repository. The purpose of this thesis is to explore different wireless
upstream link options.

The WSN mote used in this thesis project is a Herjulf mote [1] based on the Atmel ATMega128RF-
chip, which integrates an IEEE 802.15.4 [2] compliant 2.4 GHz radio transceiver, an MCU and an AD
converter facilitating the connection of analog sensors. Motes broadcast packets with sensor data.

The mote software is based on the Contiki operating system [3].
The following sections discuss different aspects of the uplink from the WSN gateway and the

experiments conducted to facilitate comparisons.
Detailed information about the structure of this report can be found in the following Thesis

Structure chapter in page 13.

1.1 Wireless Sensor Network

A sensor network is a networked system of interconnected measurement nodes communicating and
reporting their measurement data to a central repository. In a wireless sensor network (WSN) these
nodes are connected to each other wirelessly, and the nodes are usually low-power microcontroller
units with no significant memory storage.

In more detail, a WSN is built of nodes (or motes) of from a few to several hundreds or even
thousands, where each node is connected to one (or several) sensors. Each such sensor network node
has typically several parts: a radio transceiver with an internal antenna or connection to an external
antenna, a microcontroller, an electronic circuit for interfacing with the sensors and an energy source,
usually a battery or an embedded form of energy harvesting (e.g. solar panels). Size and cost constraints
on sensor nodes result in corresponding constraints on resources such as energy, memory,
computational speed and communications bandwidth. The topology of the WSNs can vary from a simple
star network to an advanced multi-hop wireless mesh network. The propagation technique between the
hops of the network can be routing or flooding [4].

1.2 Sensors

In our case the motes included sensors for synoptic weather data, soil moisture and drinking water
quality parameters, such as turbidity, acidity and redox-potential. Some motes also contain solar panels

IL222X SoC Master Thesis 5-Jan-2014
Final Report 11/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

to measure the solar power efficiency through the day and sensors monitoring the voltage and
temperature of connected batteries used as energy source.

1.3 MCU and OS

The MCU currently used for mote experiments is an Atmel ATMega128RFA1 [5]. It integrates an
MCU, ADC and RF-module in one chip. In deep sleep it consumes about 1 uA. Small solar panels are used
as power source. Instead of chemical batteries, ultra-capacitor batteries in different sizes are used as
power storage. The motivation for this choice is that they have much longer lifetime and are not
affected by operating temperature. Two different operating systems dedicated for wireless sensor
networks have been explored [6], Contiki [7] and TinyOS [8]. Contiki-Os was found more beneficial for
the work in TSLab. The Contiki capabilities for multi-tasking and its internal communication stacks were
found much more powerful than that of TinyOS. Furthermore the necessity to learn the new
programming language used in TinyOS, NesC, made it less preferable, due to the time requirements [9]
[10].

1.4 Inter-Node Communication

The communication between the sensor network nodes is supplied by internal radios working on 2.4
Ghz band using the IEEE 802.15.4 protocol [2]. This is a low power communication option which usually
allows 10-20 meters of range with an average 250 kbit/s raw data rate. In our case, the nodes wake up
according to a schedule, broadcast messages with sensor data that can be captured by the sink node
and goes back to deep sleep. On top of the IEEE 802.15.4 link protocol the Contiki’s Rime protocol is
used to broadcast [11].

1.5 Sink node and Gateway

A Herjulf mote automatically becomes a sink mote when connected via a TTL/USB converter to a
USB port of a gateway.

The gateway used in this thesis project is the Alix [12] board running the Bifrost-Linux [13] operating
system which is optimized for routing. The Voyage-Linux [14] operating system is also sometimes used
due to its easiness for adding packages. Search for something more power-lean than the Alix board is
going-on, for example a Raspberry Pi [15] with Debian inside [16].

The gateway software used to fetch measurement data from the sinknode over the USB interface
into the gateway is called sensd [17]. It stores the data from received packets in a file from which it is to
be sent upstream to the central repository.

1.6 Uplink

Uplinks can be implemented in different ways, including

 Cabled connection (copper or optical fibre), if available

 Terrestrial wireless connection, either using a data service offered by a cellular mobile network
operator or using a dedicated terrestrial wireless link on a suitable frequency

 Satellite connection

 Some sort of physical transport of data (e.g. based on Delay Tolerant Networking using wireless
phones as data carriers [18]).

The purpose of this thesis is to explore the dedicated terrestrial wireless link options.

IL222X SoC Master Thesis 5-Jan-2014
Final Report 12/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

2 Problem Statement

The main problem of this project is to get the collected data out from the sink mote of a wireless
sensor network to a remote repository with internet access. The objective of this thesis project is
exploring the tradeoffs coming with the use of

a. 434 MHz and 144 MHz frequencies and associated protocol stacks to optimize the range and
QoS (throughput, data rate, error rate).

b. Different hardware and software solutions, from dedicated hardware solutions to software
defined radio links to optimize power consumption and flexibility.

The overarching goal is to add IP over a VHF/UHF software defined radio link interface to Alix/Bifrost
gateway. And while achieving this goal, mobility of the design will also be taken into consideration,
meaning that presumed outcome of the thesis project is a portable device that uses serial port and not
so dependent on the connected platform.

3 Related Work

Similar environmental wireless sensor network projects have been known to use off-the-shelf
solutions[19][20]. A 900 MHz radio modem called FreeWave Ranger is used in these projects. This device
can give 115.2 kbps throughput with about 90 km range with clear line of sight [21].

Some other similar projects use 2.4 GHz 802.11 links with directed antennas [22]. By using directed
antennas, these projects acquired a longer range. But they were only able to reach about 300 meters.
And even the researchers in that project decided to leave their Wi-Fi gateway solution due to two main
reasons; excessive power consumption and the overhead caused by TCP/IP and 802.11b link.

Also some wireless sensor network projects have tried the option of GPRS modems, but decided
that it was not providing a stable connection [23]. In more detail, they have found out that GPRS
modems tend to lock up after extended periods of time (2-4 days) and can be recovered only by re-
cycling power to them. According to the researchers GPRS modems are generally not robust enough to
run long-term outdoor applications.

One of the projects decided to leave the data in the sink and retrieve it manually [24]. In this
implementation of the WSN, each node has its SD card storage where they store their data. And this
data can be queried from the sink node when it’s necessary. This implementation was chosen to reduce
the complexity of the system, and it was found not necessary to relay the data since the researchers
were also present on the field during the time of measurements.

Unfortunately the academic study brought up no specialized projects focusing on the uplink itself.
All the projects mentioned above were about the implementation of the wireless sensor network rather
than the uplink. But they were still explaining their uplink implementations, which proved to be useful.

4 Goals

Primary goal of this thesis project was to produce a feasible, minimum hardware, low-cost, low-
power, long range solution to the problem of getting the sensor data out from the sink mote to a
remote repository. Secondary goal was to implement IP over the same solution, so that existing user
programs, or newly developed programs could be used over this link. When this thesis project was
finished, it was planned to have at least one hardware/software solution which will be plugged into the
sensor network and the remote repository which would carry the sensor data reliably.

IL222X SoC Master Thesis 5-Jan-2014
Final Report 13/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

5 Thesis Structure

Section 1 tells about the background of the project, giving details about the situation at hand before
the project started. Section 2 explains the problem statement. Section 3 gives brief information about
the academic studies regarding the problem. And Section 4 tells about the goals of this thesis relating to
the problem. Further on, Section 6 tells about the method that was used in this project. Section 7 gives
details about the literature study before telling about the design decisions which is in Section 8. After
the design decisions; in Section 9 implementation details are presented. After, in sections 10 and 11, the
experiment plan and the data gathered in experiments are presented. Finally in sections 12 and 13, the
conclusions and possible further work is given. And finally, references can be found in section 14.

6 Method

Before starting the project, a literature study has been conducted to understand the problem, to
know about the communication protocols and stacks and to understand how packet radio works. After
this study, the metrics of the problem has been defined to have a clearer grasp of the problem and
goals. Later on, existing solutions to the problem has been explored to see if they fulfill the
requirements. This research included both general literature and academic resources. After seeing that
existing solutions were not enough, new solutions to the problem were generated approaching the
problem from its uncovered requirements. The parts until this point structured the theoretical study
phase of the thesis study.

Then, a measurement model is created to have a basis to compare solutions at hand. This model
defines what to measure and how to measure the key parameters.

After the measurement model phase, there came the implementation phase which was done in
three steps: architecture design, application design and the implementation itself. In architecture design
phase the supporting hardware and software was designed. In the application design and
implementation phases, the application was designed and implemented.

After the implementation phase, experiment plan was executed and data were collected. Then,
after the interpretation of the collected data, conclusions were deduced by discussing the results.

7 Theoretical Framework

There are many possible communication protocols and protocol stacks that can be used for uplink
communication. While the project requirements only determined the use of a single type of physical
layer, the protocol selection for rest of the layers -data link, network, transport and application- was up
to the author. Below are the discussions for different layers and different protocols.

7.1 Physical Link

The physical layer in this project is based on wireless streaming, and VHF/UHF bands are used. For
VHF, the used amateur band is 144 MHz (i.e. 2 meter band), and for UHF based amateur radio the band
is 433 MHz (i.e. 70 centimeter band). For these bands, there are rules of the amateur radio
communications. These rules are generally the same, but may differ from country to country. An
example of these rules for United States can be found in [25]. One important general rule is that the
transmitter must periodically send out the call-sign of the operator during transmissions.

IL222X SoC Master Thesis 5-Jan-2014
Final Report 14/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

On these frequency bands, we have the ability to transmit audio with a maximum of 9600 Hz sample
rate depending on the underlying hardware. Between the modulation options, there are two popular
choices, one of them is the bi-phase encoding (Manchester) [26] and the other is AFSK (i.e. 1200 baud
Bell Modem) [27].

The “soundmodem” [28] software at hand was able to generate AFSK signals for us, but on the other
hand the Radiometrix devices were not proven to work with that yet. So at the beginning of the project
the Radiometrix devices were only compatible with the digital feed.

It should also be noted that, although Radiometrix devices work the same way, there are different
constraints regarding the maximum possible baud rate that could be used. In 70 cm band (Radiometrix
Bim2A [29]), the maximum possible baud rate is 19.2 kbits/sec without overwhelming the packet error
rate, whereas in 2 m band (Radiometrix UHX1 [30]) the maximum possible baud rate is 2.4 kbits/sec
[31].

7.2 Data Link

For the data link protocol, the most important part was the frame format. For data link layer three
possible protocols were considered. These are Ethernet, IEEE 802.15.4 and AX.25 [32] [2] [33].

An Ethernet frame consists of at least 18 bytes disregarding the preambles and delimiters. It
provides 6 byte source and destination addresses, 2 byte length field, 4 byte 32-bit CRC checksum field
and a maximum of 1500 byte payload.

An 802.15.4 Data frame consists of at least 21 bytes if full addressing mode is used. It has 2 bytes of
frame control field, 1 byte of sequence number, 4-20 bytes of address information and 2 bytes of frame
check sequence.

An AX.25 Unnumbered Information frame consists of 18 bytes. It provides 7 byte source and
destination addresses. In addition it has 1 byte control field, 1 byte protocol identifier field and 2 bytes
of CRC checksum field. AX.25 is a link-layer protocol which is defined to reliably deliver data over two
amateur radio stations [33]. Although AX.25 is said to be a link-layer protocol, it also has utilities for
routing and connection-oriented transfers [33]. The simplest form of AX.25 frames are the UI frames.
These frames are similar to the UDP/IP frames. AX.25 defines a framing format for packets, protocols
etc. But it does not define a physical layer, meaning that it can be built upon any type of physical
connection, which will be demonstrated later in this thesis.

7.3 Network Layer

For network layer, IP or APRS was considered as possible options. So in the end there were 3
possible options: IPv4 [34], IPv6 [35] or APRS [36]. It should be noted that APRS is not actually an OSI
compatible network layer; it actually covers network, transport and application layers. But since it can
be used on top of a data link layer, it was also discussed under this title.

An IPv4 header consists of at least 20 bytes. The most important information for us in this header
are the 4 byte source and destination IP addresses, the 2 byte header checksum, 2 byte total length
field, and 1 byte time to live field.

An IPv6 header consists of at least 40 bytes. The most important information for us in this he ader
are the 16 byte source and destination IP addresses, the 2 byte payload length field and the single byte
hop limit field which is the equivalent of time-to-live field in IPv4 header.

APRS, Automatic Packet Reporting System is a system developed to deliver APRS messages to a
centralized database [37]. It can also be used to deliver messages between stations. An APRS packet
usually lies on top of an AX.25 layer. It makes use of the AX.25 UI (unnumbered information) frames. It
doesn’t have a specific header, except for the AX.25 source and destination call signs which are already

IL222X SoC Master Thesis 5-Jan-2014
Final Report 15/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

included in AX.25 header. They are actually simple text messages with a maximum length of 256 bytes
including the AX.25 headers [36].

7.4 Transport Layer

Like it is for many other systems, the choice of transport layer was between UDP [38] and TCP [39].
The main differences between UDP and TCP will not be discussed here. But the main diffe rence from the
author’s perspective was that UDP was easier to implement compared to TCP. But since TCP provides
reliable connection, it would need more effort to design and implement the application layer. But in
most cases the transport layer to be used is determined by the application to be used (e.g. FTP [40],
HTTP [41], TFTP [42]).

UDP (User Datagram Protocol) is most basic transport layer which is on top of IP; it only provides
application multiplexing via the use of port numbers [38]. Programmers who plan to use UDP as
transport layer should cover the cases for packet loss and erroneous packets. It is often easy to
implement but difficult to use.

TCP (Transmission Control Protocol) gives the user the ability open reliable data streams called
sockets [39]. While using TCP, a programmer doesn’t have to consider the possibility of packet losses or
errors in packets since TCP takes care of that. Unlike UDP, it is more difficult to implement TCP but due
to its features, it is an easier transport layer to build applications upon.

Regarding IP based network protocols; in Linux based systems TUN/TAP [43] devices can be used to
read in/write out raw IP data from/to user programs. These virtual network kernel devices allow users
to write their own network drivers without going deep into the Linux kernel. This allows a developer to
tunnel the IP packets from user programs to do whatever they like for example redirect them to a radio
device.

APRS also has some routing utilities which resembles functionality of a transport layer. APRS
messages are carried and routed with repeaters called digi -peaters [44]. When an APRS message is
relayed, the digi-peater adds its call-sign to the message so that it doesn’t pass through that station
again. But apart from this, APRS transportation is based on flooding [45]. APRS also has some special
call-signs to designate a direction to the messages, so that location-aware stations can ignore and drop
the message.

Except TCP and UDP there is one interesting protocol that is available, which is called CoAP. CoAP,
the Constrained Application Protocol is a transfer protocol designed for half-duplex and/or low
bandwidth channels [46]. It is a transport layer protocol, not an application layer protocol. It works on
two types of messages; requests and responses. And it is a RESTful [47] protocol which makes it more
compatible with HTTP. It also normally depends on UDP or other unreliable transport layer, and it has its
own mechanisms to avoid congestion and packet loss. Its congestion avoidance mechanism is
exponential back-off. One important thing is CoAP does not assume anything about what-duplex the
underlying channel is. On the other hand, a programmer can tune his application to use CoAP on a half-
duplex channel very efficiently. One of its advantageous properties is to be able to mark messages as
`confirmable` or `non-confirmable`. Which -for example in a sensing application- could be used in such a
way: If a reading does not change with respect to the previous reading, the new reading could be sent as
non-confirmable, spending less bandwidth and resources and so on. Contiki-OS also has a low-power
implementation of CoAP which might be used [48].

7.5 Application Layer

IL222X SoC Master Thesis 5-Jan-2014
Final Report 16/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

There are many possible application layers that could be used to transfer files but we explain the
most popular ones here, which are HTTP, TFTP and APRS. HTTP works over TCP/IP, TFTP is usually works
over UDP/IP but can also work with TCP/IP and APRS works over connection-less AX.25 [41][42][36].

HTTP is the protocol that is widely used in today’s world-wide-web to exchange files between clients
and servers. It provides a simple request/response protocol, but can be used for higher functionality
access and/or modify any kind of resource.

TFTP is a very old file transfer protocol from the times of early TCP development. It was designed to
simply transfer files without complexity. TFTP has some specific limitations to itself; e.g. file size cannot
be larger than 4 gigabytes, or there is no handshake to finish a transfer.

APRS is generally used for weather and location reporting, and also used for messaging between
amateur radio stations. It also has a telemetry reporting functionality for users who want to report any
kind of measurement data. This functionality is usually popular with the amateur ballooners who collect
different kinds of data from air or from their balloon. The data server and user interface for APRS system
–namely aprs.fi website- has a feature to plot these measurements data for users instead of just
showing it in a table.

7.6 Hardware

For hardware there are all sorts of interesting radio options. Usually packet radio is implemented via
a TNC (Terminal Node Controller) and a regular handheld or movable radio station from brands like
MAAS or Yaesu [45]. In this sort of setup AX.25 packet generation, modulation and PTT control is
handled by the TNC and transmission and reception is handled by the radio.

One interesting possible choice of hardware is the use of dedicated radio modules like Radiometrix
devices. These devices are at most credit card sized modules which has the same properties as a radio
except for the natural user interface such as speakers, microphone and/or buttons. These devices –
depending on the model- are completely programmable via their digital ports and support the
transmission and reception of digital signals as well as analogue signals. Like regular radios most of the
models do not provide full-duplex channels but half-duplex channels. The most interesting models from
the Radiometrix family are the Bim2A [29] and UHX1 [30].

The Bim2A model is a fixed frequency UHF transceiver with fixed transmission power of 10 mW. This
model can be easily used by connecting it to a serial port of a computer or a microprocessor. Or it can
also be used to send and receive analogue signals, but this requires a sound card or an ADC/DAC couple
and some software or hardware processing to convert the signals into data. In any case the PTT is
signaled via assertion of the TX enable pin. It is again up to the user how to assert this signal, but the
easiest suggested method is using the RTS flow control signal of a serial port.

The UHX1 model is a multi-frequency VHF transceiver with programmable transmission power (1
mW to 500 mW) and with programmable frequency (144 MHz to 146 MHz). Except for the extended
programmability the use of UHX1 is very similar to Bim2A. The easiest way to use it is to connect it via a
serial port. But the ability to change frequency and power gives the user more flexibility about
implementing a link (i.e. frequency hopping, power decreasing when necessary etc.).

7.7 Metrics

As previously mentioned the goals included the outcome of the project to have low power
consumption, minimum hardware requisite (low financial cost) and long range. Here, we defined these
metrics and measurement models for these metrics.

IL222X SoC Master Thesis 5-Jan-2014
Final Report 17/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

The maximum transmission power of IEEE 802.15.4 packets in the wireless sensor network is 2.5
milliWatts [5]. And from the related works we also learned that usual 802.11 Wi-Fi links use 100
milliWatts of transmission power [49]. So the author decided to set 2.5 mW as lowest possible
transmission power and 100 mW as the highest possible transmission power for the uplink.

The hardware requirements were metricized in means of financial cost. So every chip, cable and PCB
production cost was a negative point for the minimum hardware goal.

The range is normally very dependent on the transmission power, but in this project we decided
that range metric should be done regarding the same transmission power for different solutions. Apart
from that, the personal experiments of Robert Olsson showed a 200 meter range with IEEE 802.15.4
protocol with 2.5 mW transmission power with directed antennas. Therefore author decided that for 10
mW 400 meters were the minimum acceptable range by using the simple power vs. range relation
(range is directly proportional to the square root of transmission power). There was no maximum range
specified for this project since the goal was to reach as far as possible.

8 Design Decisions

8.1 Predefined Decisions

On the WSN side, the decision was to use a topology with a sink node connected to, or integrated
with, the uplink gateway. All WSN nodes use the Rime Protocol over IEEE 802.15.4 protocol stack and
are implemented using the ATMega128RFA1 MCU with integrated radio and Contiki as OS.

On the uplink side, the decision was to try two different Radiometrix radio components, Bim2A (434
MHz) and UHX1 (144 MHz) [29] [30]. These radios are both NBFM radios. They support feeding a digital
data stream directly or feeding a high level linear signal such as an AFSK modulated signal , into their
inputs. Using a digital stream means that the radio component can be connected via a serial port, while
using a modulated signal means interfacing via a separate hardware modem (e.g. TNC) or via a
soundcard and a soft-modem (e.g. soundmodem). Also in the development process instead of single-
chip radio solutions, handheld [50] or portable radio stations [51] were also used.

In all cases TX/RX switching was done via a serial port’s RTS signal. Using a digital feed is less
complex, which facilitated the interconnection of the uplink gateway and WSN the sink node. Using an
analog feed requires a separate modem or more software and processing power, but can be adapted to
existing standards more easily.

The choice of OS/computer/processor when implementing the uplink gateway was a tradeoff
between ease of demonstration and performance optimization.

When using the digital input in the uplink radio, it was also interesting to explore if the upstream
gateway may be possible to implement under Contiki-Os, which is demonstrated later in this section in
hardware decisions.

When using a dedicated gateway, the stepwise refinement chosen was as below to speed up the
development process;

1. Ubuntu/Laptop
2. Voyage/Alix
3. Bifrost/Alix.

Below are the design decisions made regarding the communication protocols and their discussions.
And after that hardware selection has been made.

8.2 Physical Layer

IL222X SoC Master Thesis 5-Jan-2014
Final Report 18/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Since the project supervisors were interested in testing both frequency band which were mentioned
before, the author decided to build the project to be compatible with both bands regarding the
constraints that come with them. For this purpose the author decided to make the software
parameterized to set the timings.

The project supervisors were also interested in testing both type of modulations (digital and analog).
This decision was going to affect the future progress of the project since analog feeding required extra
hardware and software relative to the digital feeding. Therefore the author decided not to select one
type of modulation and decided to use whatever type of physical layer is feasible when the remaining
design decisions are made. In any case later decisions were not affected by this decision due to the
natural structure of the OSI Model [52].

8.3 Link Layer

For the link layer firstly the Ethernet frame format was considered. It provides the basic functionality
of addressing and checksum to reliably transfer messages. Then 802.15.4 frames were also considered
since it also provided the same functionality. The frames coming to the gateway are also 802.15.4
frames, and we thought we could use this fact to our advantage; the frames could directly be uploaded
to the upstream.

But later it was decided that these options are not viable due to an amateur radio operating rule;
whatever communication occurs within the amateur bands, the communique (the message) must
include the call sign of the operator. AX.25 frames are actually exactly designed regarding this and many
other rules. And it also provides the reliability with a 16-bit checksum. So for the link layer the AX.25
frame formatting was decided to be used from this point forward. And the fact that IP over AX.25
libraries existed and also APRS was also worked over AX.25 contributed to this decision.

8.4 Network Layer

For the network layer three options were possible, IPv4 IPv6 and APRS.
APRS messages are basically AX.25 UI packets with a special formatting. APRS was thought of

transmitting messages between the gateway and the remote repository using station to station
messaging system. Also instead of transmitting the collected data to a specific repository, transmitting
the data to the APRS system via use of amateur radio software like “aprx” [53] and “xastir” [54] were
explored. And in the end, “aprx” software was found to be more useful for our purposes due to its
beaconing features that could be used to generate and transmit telemetry reports.

Regarding IPv4 and IPv6, at first it was considered that IPv6 would be more beneficial since mote
addresses could be directly mapped to IPv6 addresses and due to its less number of redundant fields.
But then due to its large header requirement –even with the discarded redundant fields- IPv6 was
eliminated to have better data over header efficiency. For example the standard maximum packet size
for AX.25 frames is 256 bytes. Therefore cutting 20 bytes from the header would give us an increase in
the header efficiency of 8% in the network layer.

Regarding all possible network layers, the author and project supervisors decided to try and
compare the possible outcomes with the choice of APRS vs. IPv4. So at this point of the project, there
was a branching regarding the network layer. From this point forward next layers were considered
differently for APRS and IPv4 case.

8.5 Transport Layer

The decision between TCP and UDP was not a trivial choice. As mentioned before TCP was more
difficult to implement but easier to use on the upper layers, and UDP was easier to implement and more

IL222X SoC Master Thesis 5-Jan-2014
Final Report 19/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

difficult to use on the upper layers. Apart from this, most important factor in this decision was the
overhead coming with the TCP. Also from the previous studies it was known that TCP would have a great
overhead due to its features.

As mentioned before, virtual network kernel devices called TUN/TAP devices would allow the author
to skip actually implementing TCP and would allow the usage of it directly. The “soundmodem” software
would also allow the author to use TCP directly without actually having to implement it.

And for UDP, since it is a simple protocol, there wasn’t really a concern about how to implemen t,
but a concern about the application.

At this point the author decided to try them both to observe the behavior of TCP in slow and half-
duplex radio links. And also APRS –as mentioned before- was to be tried out too. So from this point
forward there were three branches in the project that was going to test TCP/IPv4 over AX.25, UDP/IPv4
over AX.25 and APRS over AX.25.

8.6 Application Layer

Up to this layer, the project has already branched out to 3 different protocol stacks. For each of
them a different application layer had to be chosen.

For the solution that was planned to use APRS over AX.25, there is no application layer to be chosen
except for a client application to be run on since APRS also covers the application layer. And for client
program two options were considered, “xastir” and “aprx”. As mentioned before “aprx” was chosen to
be a better option for this project since, “aprx” was easily programmable to send out periodic telemetry
messages. And it was also later discovered that “xastir” required a GUI to run.

For the TCP/IPv4 over AX.25 branch, HTTP was chosen as the application layer due its ease of use
and due to accessibility to many libraries and software that supports it. And to serve the HTTP
functionality, Apache [55] software was chosen as the server due its popularity and its ease of
configuration. As the client application Wget [56] is chosen due to its many useful properties.

For the UDP/IPv4 over AX.25 branch, it was considered to write custom application layer software.
But after the studies, the TFTP protocol [42] was discovered. The Trivial File Transfer Protocol was found
to be perfect for the project’s requirements, and other options were left out such as FTP [40] or SFTP
[57].

At this point of the project there are still three branches from the protocol stacks point;

 HTTP/TCP/IPv4/AX.25
 TFTP/UDP/IPv4/AX.25

 APRS/AX.25
More information about how these protocol stacks were implemented and/or used can be found in

the Implementation Details in Section 15.

IL222X SoC Master Thesis 5-Jan-2014
Final Report 20/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Figure 1 Resulting branches in the project after design decisions

8.7 Hardware

For digital links it was seen that a regular (handheld or movable) radio is not fit for the job, so digital
feeding was only possible with the use of Radiometrix devices. And for analogue feeding Radiometrix
devices were not proven to be working during the project timeline, so a regular radio was decided to be
used for the job (e.g. YAESU [51] or MAAS [50]).

For implementing a link with APRS over AX.25 the only possible way was found to be using the
“soundmodem” software with “aprx” running with it. And for this purpose the conventional hardware
selection is using a regular radio connected to a PC with a sound card and PTT is controlled via a serial
port. So, for testing and implementation purposes a MAAS handheld radio connected to an Ubuntu
computer via a USB audio card and a TTL/USB Uart cable [58] was decided to be used.

For implementing a link with TFTP over UDP/IP over AX.25 three possible options were considered;
one of them was using the “soundmodem” software with linux network libraries using analogue
modulation. Second one was using the TUN/TAP devices to create a kernel network interface and using
serial port and therefore using digital modulation. And the last one was writing custom software with C
using the serial port, therefore using digital modulation. Due to the implementation of APRS link, the
“soundmodem” software was already going to be set up and tested, so author decided to leave out the
option of “soundmodem”. The benefit of using TUN/TAP devices is that user programs can use TCP
without dealing with any libraries or compatibility issues, and since we were aiming only to implement a
UDP link, the author also decided to leave out this option. So we decided to go with the custom
software option, so that the newly written software could be developed to be compatible for many
more platforms and also requiring much less hardware (i.e. a Radiometrix device and a serial port
connection). Also with full customization of the software the timings and any problems that could occur
could be fixed by directly going into the code. At this point the author also decided to port this custom
software to Contiki-OS for Atmega128RFA1 chip, so that its portability could be tested and verified.

For implementing a link with HTTP over TCP/IP over AX.25, two options were considered; one of
them was using the network interface created by using the “soundmodem” software and to use some

Application

Transport

Network

Data-Link

Physical VHF/UHF Analog or Digital Modulation

AX.25

IPv4

TCP

HTTP

UDP

TFTP

APRS

APRS

APRS

IL222X SoC Master Thesis 5-Jan-2014
Final Report 21/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

off-the-shelf HTTP server and client to test the link (e.g. Apache Web Server and wget). So this link
would have analogue modulation and required almost no new software to be written. Second was using
the virtual kernel network interfaces via use of TUN/TAP devices and again use some off-the-shelf HTTP
server and client application to test the link. The author decided to try both to be able to observe and
compare the advantages and disadvantages of using TUN/TAP devices compared to “soundmodem”.

Finally for all radios the author decided to use the same antenna for all experiments if possible.
Later on it was decided that this was not feasible during the project so different antennas were decided
to be used for different bands. Nevertheless to maintain the experiment reliability same antennas were
used for all implementations. For 144 MHz band this antenna was a omnidirectional Yaesu CR-8900, and
for 433 MHz band this was a MAAS omnidirectional handheld radio antenna.

To sum up; in the end there were 5 different implementations planned for 3 different protocol
stacks:

 2 different implementations for HTTP over TCP/IPv4 over AX.25 using digital and analogue
modulation types for Linux platforms

 2 different implementations for TFTP over UDP/IPv4 over AX.25 using digital modulation for
Linux and Contiki platforms

 Single implementation for APRS over AX.25 using analogue modulation for Linux platforms
The author decided to name these implementations as below to avoid confusions in his further

work.

 Implementation with HTTP/TCP/IPv4/AX.25 with analogue modulation using
“soundmodem” software was called the “soundmodem” solution.

 Implementation with HTTP/TCP/IPv4/AX.25 with digital modulation using TUN/TAP devices
was called the “radiotunnel” solution.

 Implementation with TFTP/UDP/IPv4/AX.25 with digital modulation for Linux platform was
called the “radiotftp” solution.

 Implementation with TFTP/UDP/IPv4/AX.25 with digital modulation for Contiki platform was
called the “radiotftp_process” solution (i.e. user programs are called processes in Contiki).

 Implementation with APRS/AX.25 with analogue modulation was called the “APRS” solution.

IL222X SoC Master Thesis 5-Jan-2014
Final Report 22/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Figure 2 Resulting solutions after hardware decisions

9 Implementation Details

9.1 Radiotftp

This solution feeds digital data into the radio. And the digital data is generated via the serial port.
This solution generates Manchester encoded AX.25 frames encapsulating IPv4 packets.

Radiotftp solution uses tailored software to drive the Radiometrix radio transceivers. The software
can run either as a server or as a client depending on its parameters. A client can send WRQ and RRQ
requests as stated in TFTP RFC[42]. The TFTP application is built by following the standard OSI layers[52].
The link layer is AX.25. The network layer is UDP/IPv4 [38][35]. These layers ensure that the transmitted
data is indeed correct. And the network layer may be used for future work such as routing or
forwarding. It is usual for a wireless sensor network to create large amounts of data as time progresses.
Therefore an appending option has also been added to the protocol. So the client (i.e. gateway) can
send the data as it arrives. The general system diagram can be seen in Figure 3. Below is a list of
advantages and disadvantages of this solution.

Advantages:

 This is a tailored solution for the problem, therefore it is reasonable to assume that it will have
more performance (i.e. greater throughput).

 It is written completely in C and it is not dependent on Linux kernels, therefore it should be
relatively easier to port.

Disadvantages:

 Since it is a tailored solution, it is a less flexible solution (i.e. only file transfer is allowed,
command sending or remote shell is not an option).

HTTP/TCP/IPv4/AX.25

Soundmodem

Analogue Modulation

Linux Platform

Radiotunnel

Digital Modulation

Linux Platform

TFTP/UDP/IPv4/AX.25

Radiotftp

Digital Modulation

Linux Platform

Radiotftp_process

Digital Modulation

Contiki Platform

APRS/AX.25

APRS

Analogue Modulation

Linux Platform

IL222X SoC Master Thesis 5-Jan-2014
Final Report 23/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

 Since a serial port is involved, actual AX.25 framing is not an option (AX.25 is a bit based
protocol; no bit stuffing, larger MTU, start and stop bits from UART) [33].

Figure 3. System diagram for radiotftp solution

For the purpose of implementing the project, the C language was chosen for the reasons of

portability brought on by extensive use, along with computational efficiency. The methodology of
programming was chosen to be event-driven, as this would make porting the program to systems
without pre-emption easier than it would with polling type.

The development and deployment platforms were both chosen to be systems based on the Linux

kernel due to the flexibility brought on by its open source. However, to retain a wider scope of
compatibility and increase the reusability of the code, no libraries that depend on the GNU/Linux system
were utilized with the main exception of the portable POSIX functions [59].

The implementation started by implementing each layer of OSI, step by step. First of all the
Manchester encoding and decoding utilities have been implemented as the physical layer. After that
AX.25 UI message creators and openers have been implemented as Data-link layer. Above that IPv4
packaging functions are implemented as network layer. No routing algorithm other than static routing is
implemented, since it would be redundant for our case. But, a useful API is presented to further
developers if any routing algorithm is to be implemented. And above all, a programming interface is
presented to developers who want to write network applications.

The implementation output was an IP stack built upon and compatible with OSI model standards.
This structure is formed only with packaging functions such as package creators or openers. However,
the custom API also allows advanced functionality such as packet queues, timer callback assignment and
packet reception callback assignment. The workflow of the stack is demonstrated in the pseudocode
given in Figure 24.

Network applications often require timer and buffering utilities, so a queuing system and a timer
system have been implemented. The queue size was chosen as 1 for this specific implementation as the
application requirements dictate that as the maximum queue depth. Similarly, the number of available
timers is also set to one as the demand of the TFTP application necessitated only one. However,
depending on requirements for other potential uses, the number of timers and the space in transmit
queue can be modified. The timers and queue interfaces are abstracted from the rest of the system,
allowing their modification to not affect the proper working of the upper layers. The specific details are
provided in the header files of the source repository.

Although the software was written to be as independent as possible, some POSIX functions have
been used for file operations and timer operations. From the POSIX functions, most frequently used
ones are file operations like open, read, write and close. Alarm signal has also been used to set up
timers. Furthermore to make the software more operating-system and hardware independent “stdint”
library has been used for maximum compatibility among systems[60].

IL222X SoC Master Thesis 5-Jan-2014
Final Report 24/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

In the end, what software does can be summarized like; the system receives bytes and puts them
into a Manchester buffer until a predefined end-of-packet character is received. Then the packet is
Manchester decoded, and assuming the packet is an AX.25 UI frame an attempt is made to open it. If
successful, the payload of the frame is assumed to be a single UDP/IPv4 packet and is opened. If again
successful, then the system routes or multiplexes the packet to the relevant destination or application
respectively.

A manual which explains how to configure the radiotftp on both sides have been written during the
development. This manual can be used to set up a client and server for wireless sensor network
gateways that are using sensd or alikes [61].

9.2 Radiotftp_process

This solution feeds digital data into the radio. And the digital data is generated via the serial port.
This solution generates Manchester encoded AX.25 frames encapsulating IPv4 packets.

Radiotftp_process solution proposes the use of radiotftp software proposed in solution 1, and
porting of this software into Atmega128Rfa1 running Contiki-Os. The radiotftp software will be ported as
a Contiki process called radiotftp_process. In this solution the gateway can be completely removed, and
the sink mote can personally send the sensor data. This solution is very similar to the solution 1 except
for this change. The general system diagram can be seen in Figure 4. Below is a list of predicted
advantages and disadvantages of this proposed solution.

Advantages:

 Removal of gateway saves a lot of power (e.g. 5 Watts).
Disadvantages:

 Removal of gateway also means the removal of the gateway storage. So, in a case of broken link
or broken receiver, the data is lost instead of being saved in the gateway.

 Requires porting of the software to Atmega128Rfa1 with Contiki, which takes time (even though
radiotftp is designed to be portable).

 Since it is a tailored solution, it is a less flexible solution (i.e. only file transfer is allowed,
command sending or remote shell is not an option).

 Since a serial port is involved, actual AX.25 framing is not an option (AX.25 is a bit based
protocol).

Figure 4 System diagram for radiotftp_process solution

Like in radiotftp solution the of programming was C. This solution was actually a ported and a

slightly modified version of the radiotftp software. A Contiki process was written to do exactly the same
thing as radiotftp solution does. Contiki processes can be seen analogous to the UNIX pthreads with one

IL222X SoC Master Thesis 5-Jan-2014
Final Report 25/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

major difference. That is, Contiki-OS doesn’t support preemption. So, the Contiki processes have to yield
the CPU on their own, allowing other Contiki processes to get their share of the CPU time.

Contiki-OS is a task queuing real time operating system designed specifically for “the internet of
things” [3]. Contiki processes work like general purpose operating system tasks, except for the voluntary
yielding. Contiki-OS also presents a lot of useful utilities for creating timers, managing memory, using
peripherals and most importantly for networking with IP. Since the timers and packet queuing system in
radiotftp software was abstracted from the underlying system, it was a rather easy task to modify the
relevant parts of the software.

The workflow is as follows: normally, CPU is busy collecting data from environment. But when it is
ready to send data, it signals the radiotftp_process and so it wakes up the process. When it wakes up it
takes the data from a given pointer as if it is reading a file and transmits it as radiotftp software would
send.

UART reception interrupt saves the received byte and treats every byte as Manchester encoded
data, but when it receives the predefined end-of-packet character. It copies the received packet into a
safe location and wakes the radiotftp_process for processing input data.

In this implementation the lab tests showed that maximum possible baud rate is 4800. It is observed
that higher baud rates like 19200 and 38400 require more processing power or a higher CPU frequency.

One disadvantage that this solution brought was the increased level of power saving mode.
Normally we can put the CPU into “Power-Down” mode where system clock is halted and a great
amount of reduction in power consumption is observed[5]. But with this implementation, due to the
necessary enabling of the UART receive interrupt, CPU can be put into “Idle” mode at least [5].

To demonstrate the patching capability of the radiotftp_process to any existing Contiki-OS system
with existing processes and resources, a simple Fibonacci Series calculator process is written. Then it’s
modified to wirelessly transmit the computed data via radiotftp_process. This process is also a good
example to demonstrate how processes and timers work in Contiki-OS.

Finally, the size footprint of the radiotftp_process is also very small. It only adds about five kilobytes
to Contiki-Os footprint. The details of the fibonacci application can be found in Figure 5.

avr-size --format=berkeley -t fibonacci.avr-atmega128rfa1
 text data bss dec hex filename
 40809 3506 10052 54367 d45f fibonacci.avr-atmega128rfa1
 40809 3506 10052 54367 d45f (TOTALS)
Finished building: fibonacci.size

Figure 5 Size footprint of Fibonacci application with radiotftp_process

9.3 Radiotunnel

This solution feeds digital data into the radio. And the digital data is generated via the serial port.
This solution generates Manchester encoded AX.25 frames encapsulating IPv4 packets. It achieves it by
encapsulating the IPv4 packets generated by the kernel and putting them in AX.25 frames. After that the
frames are Manchester encoded and sent. Since the packets are generated by the kernel, the transport
layer is dependent on the used application (e.g. TFTP uses UDP, while FTP uses TCP). But we decided to
use HTTP as mentioned before to take advantage of TCP.

Radiotunnel solution proposes the use of a kernel tunnel interface to create a network kernel
interface to drive the Radiometrix transceivers. A software called radiotunnel was written to capture IP
packets. Captured IP packets are encapsulated with AX.25 headers. They are Manchester encoded and

IL222X SoC Master Thesis 5-Jan-2014
Final Report 26/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

transmitted through Radiometrix transceivers. The receiver part will capture these frames, decode and
unpack them. After that, received IP packets are fed back to the kernel for user programs’ use. The
general system diagram can be seen in Figure 6. Below is a list of advantages and disadvantages of this
proposed solution.

Advantages:

 Like the soundmodem solution, this is a very flexible solution. It will allow the use of any kind of
user programs that use network.

 It’s relatively easy to implement.
Disadvantages:

 As in radiotftp solution, since the underlying hardware will be a serial port, AX.25 will not be
fully followed (e.g. no bit stuffing, larger MTU, start and stop bits from UART).

Figure 6 System diagram for radio_tunnel solution

Radiotunnel solution can be viewed as a hybrid of radiotftp solution and soundmodem solution. Like

radiotftp it uses the custom AX.25 and IP stacks. It actually makes use of the same codes from radiotftp
solution. But unlike radiotftp solution it is library dependent, therefore it is more operating-system
dependent. From the runtime point of view, it is more like the soundmodem solution. When you run the
solution it creates a network interface in the system. So after set up, it is up to the user to choose what
protocol to use to commence the transfers.

The solution is implemented by using user-mode linux utilities [62]. In particular TUN/TAP devices
were used [63][64]. TUN/TAP devices are virtual network kernel interfaces, which tunnel the network
packets to a software stream. They are easily opened, read, written and closed as if they were files (i.e.
POSIX compatible).

TUN devices create IP tunnels, whereas TAP devices create Ethernet tunnels. Since we are not
interested in Ethernet in this solution, project proceeded with TUN devices. The newly created interface
tunnels the IP packets coming from other applications to a character stream. So, incoming IP packets can
be read byte-by-byte from the character stream. And raw IP packets can be written to the same
character stream, and they will be received by applications from the interface end.

Basically, a developer can virtualize anything that could be networked to the system. For example a
simple ping responder can be seen in Figure 28. In our case the traffic is encapsulated or decapsulated
with AX.25 and Manchester protocols, and tunneled into the serial port. The data incoming from serial
port is Manchester decoded, and AX.25 unframed, and the payload is directly fed into the TUN device
without even checking the content. The data outgoing from the TUN device is first AX.25 framed and
then Manchester encoded, and directly fed into the serial port.

But the kernel was assuming that the underlying hardware was full -duplex, and this was a problem
for us. Since kernel thought the channel was full-duplex, it wasn’t waiting for the remote side to
respond, therefore causing a whole lot of messages to collide and to be dropped. The solution was

IL222X SoC Master Thesis 5-Jan-2014
Final Report 27/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

forcing the radiotunnel to drop some of the packets on the software side. So a rule was hardcoded into
the software making sure that, there won’t be any consecutive radio activity within 1 second. This
parameter was found to work best by lab testing. Due to the forced packet drops, there was some TCP
overhead, but this was found to be the only solution that worked. A further work could implement an
actual network interface which can declare the hardware layer as half -duplex. Or a full-duplex radio
communication can be used, in that case the forced packet drop wouldn’t be needed.

9.4 Soundmodem

This solution uses audio ports of a system to generate AFSK modulated signals that carry AX.25
frames. Within the AX.25 frames there can be APRS messages as network/transport layer or IP packets.
It achieves it by encapsulating the IPv4 packets generated by the kernel and putting them in AX.25
frames. After that the frames are AFSK modulated and sent. Since the packets are generated by the
kernel, the transport layer is dependent on the used application (e.g. TFTP uses UDP, while FTP uses
TCP). But as mentioned before we decided to use HTTP

Soundmodem solution uses existing AX.25 kernel headers of Linux and the ‘soundmodem’ software
which was written by Thomas Sailor[65][28]. The soundmodem software creates a virtual kernel
network interface using the audio ports of a system. After running the software and setting up the
hardware connections, two computers can interact with each other as if they are connected via an
Ethernet cable. This means any kind of network resource of Linux is available (e.g. TCP/IP). After the
setup, a small web server is run to host the incoming data to gateway. Unfortunately, soundmodem
software is not yet ready for Bifrost, but it works in a Debian branch called Voyage Linux[14]. For the
tests, Voyage Linux has been used. The general system diagram can be seen in Figure 7. Below is a list of
advantages and disadvantages of the proposed solution.

Advantages:

 This is a completely standard and a generic solution to the problem, therefore it is more flexible.
It even allows running of an http server in the gateway or “ssh”ing into the gateway.

Disadvantages

 It requires more hardware (e.g. volume control circuits, USB audio fobs for Alix boards).
 Initial tests showed that the link is very slow (e.g. 50 bytes/sec) and not so stable (TCP timeout

problems).

Figure 7 System diagram for soundmodem solution

The soundmodem solution required very less new software writing. But instead, it required custom

hardware design such as an audio leveler. Soundmodem software was first set up and tested in a
graphical user interface environment such as Ubuntu, where soundmodemconfig utility came in handy
for both setup and diagnostics which can be seen in Figures 8 and 11. It was used to configure the

IL222X SoC Master Thesis 5-Jan-2014
Final Report 28/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

soundmodem parameters such as IPv4 settings, channel access settings, delay settings, push-to-talk and
sound card settings.

Figure 8 Soundmodemconfig utility configuration options

The aforementioned audio leveler circuit is used to level the audio levels that are going to or coming

from the radio. The radio in this solution was either the Maas AHT2-UV or Yaesu FT8900R. The same
circuit was also used to control the push-to-talk buttons of the radios. The Maas handheld radio had the
PTT controller installed in the microphone port. On the other hand Yaesu station was using a data port
to interface any terminal as can be seen in Figure 9.

Figure 9 Yaesu FT8900R Data port signals

There was no PCB design for this circuitry, since it was a very simple circuit and it was different for

Yaesu and the Maas. A card that allows switching between Yaesu and Maas was prepared and used.
According to the type of radio that is to be used, the locations of patch cables had to be changed. The
schematic of the card can be seen in Figure 12 and the actual can be seen in Figure 10. The details of this
card can be found in the soundmodem manual that was written during the development phase [66].

IL222X SoC Master Thesis 5-Jan-2014
Final Report 29/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Figure 10 Audio leveler and PTT controller card

IL222X SoC Master Thesis 5-Jan-2014
Final Report 30/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Figure 11 Soundmodemconfig utility channel settings

Then soundmodemconfig’s diagnostic utilities were used to establish and test a link between two

computers in lab environment. To test the soundmodem without IP, an AX.25 amateur radio station
software called xastir is used [54]. In such, two amateur radio stations were set up and APRS messaging
is tested between them. On succession, other utilities that work on IPv4 on AX.25 such as ping, ssh, ftp
and wget were used to test the connection. Steps until this were also necessary for the APRS solution, so
it should be stated that, it eased the job for perfecting the APRS solution.

What soundmodemconfig does is to create an XML file to be used when soundmodem is invoked.
So it is actually possible to configure soundmodem in environments without graphical user interface. So
a manual for setting up soundmodem in environments without GUI has been written to ease of future
developer or enthusiasts [66].

The next step was to move this solution to Bifrost/ALIX, but unfortunately there were some
difficulties with this process. The soundmodem package and some of its required dependencies were
not ported to Bifrost. Therefore it was impossible to build or to run the soundmodem utility in
Bifrost/Alix. However, a middle way solution was chosen and proceeded with. The Voyage Linux
distribution was able to build soundmodem and all of its dependencies [14]. So the final solution
requires a Voyage/Alix machine until the soundmodem and its dependencies are ported to Bifrost.

Figure 12 Simple audio leveler and push-to-talk circuit

IL222X SoC Master Thesis 5-Jan-2014
Final Report 31/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

After setting up the soundmodem, it is possible to have two networked computers. Or, in our case;
the gateway and a remote repository computer was networked wirelessly with a half -duplex IPv4 link.
Then the project proceeded with setting up an Apache web server on the gateway side, and using wget
or similar on the client side to fetch the collected data.

9.5 APRS

This solution uses APRS as application, network and transport layer. The measurement data is
converted into APRS telemetry messages and transmitted.

Aprs solution proposes the transmission of collected data to the APRS network. This solution
requires the soundmodem software and aprx software running as beacon. When the data arrives from
the WSN, a small bash script converts this data into an APRS telemetry message and transmits it into air.
If there are any APRS listeners, they will pick-up and probably forward this message to the APRS
database. For testing this solution, an APRS I-Gate (i.e. RF-to-internet forwarder) will also be set up. The
general system diagram can be seen in Figure 13. Below is a predicted list of advantages and
disadvantages of this proposed solution.

Advantages:

 This is a completely standard solution.

 This solution can utilize the existing APRS network if there are any.
Disadvantages:

 APRS restrictions may cause data loss, or there may not be enough space for our data (e.g.
minimum time between consecutive APRS transmissions, APRS telemetry allows 5 types of data
only).

Figure 13 System diagram for APRS solution

APRS solution is implemented by again setting up the soundmodem software and hardware. But

instead of IP, APRS is used as the transport layer. And for that purpose the aprx software is used. Aprx is
a simple command line, amateur radio station software which is generally used for Rx-to-Inet, Inet-to-
Tx, and Rx-to-Tx digipeating purposes. It also has features like periodically transmitting APRS messages
or sending automated traffic statistics. It is simply configured by editing an aprx.conf file whose can be
seen below in Figure 14.

mycall SA0BXI-13 #mycall must be the same port in axports file

<aprsis>

IL222X SoC Master Thesis 5-Jan-2014
Final Report 32/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

server rotate.aprs2.net
</aprsis>

<logging>

pidfile /var/run/aprx.pid
rflog /var/log/aprx/aprx-rf.log
aprxlog /var/log/aprx/aprx.log

</logging>

<interface>

ax25-device $mycall
tx-ok true

</interface>

<beacon>

beaconmode both
cycle-size 20m
beacon symbol "R&" lat "6016.35N" lon "02506.36E" comment "Rx-only iGate"
beacon file /tmp/wxbeacon.txt

</beacon>

Figure 14 Simple configuration file for aprx,

As mentioned before, APRS telemetry messaging was found to fit best for our purposes. Simply

explained, APRS telemetry messages support transmission and logging of five analog values and eight
binary values. User has to send four different kinds of messages to properly transmit telemetry data.
These are label, data, coefficient and project name messages. From these four only label, data and
coefficient messages are necessary. Also, label and coefficient messages can be transmitted less
frequent then data messages.

Unfortunately aprx does not provide any telemetry utilities. But it has an option for transmitting
custom raw APRS messages that are stored in a text file. This option is called the be aconing. Beaconing
has several options. Aprx does not specifically watch the file for changes, but instead a time interval is
set up and the APRS messages in the text file are sent periodically according to the setting in aprx.conf.
So a shell script can be written to change the designated beacon file.

One issue with aprx software was the built-in automated telemetry messages. Aprx is hard-coded to
send telemetry messages about the station’s usage and traffic statistics. This was causing a problem
since the telemetry information was colliding and therefore the resulting data was being corrupted. To
fix this issue, aprx source has been tampered with to disable this automated telemetry messages. This
simple fix can be found in Figure 30.

In the end all that is left for the user is to set up a shell script and aprx settings to set up the whole
system. Finally, to save the user from the details of APRS protocol, a simple command line utility called
aprs_telemetrit is written (Figure 15). This utility simply takes in the telemetry message parameters as
program arguments and outputs the raw telemetry message. So, all the user has to do is to set up a
simple shell script like in Figure 30.

telemetrit type callsign receiver_callsign [content]
type = data,label,unit,coef,bitsense

example for data:
 telemetrit data NOCALL NOCALL-1 sequence_number A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 B7 B8
unwanted telemetry data can be omitted starting from the left

example for label:
 telemetrit label NOCALL NOCALL-1 A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 B7 B8

IL222X SoC Master Thesis 5-Jan-2014
Final Report 33/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

unwanted labels can be omitted starting from the left

example for unit:
 telemetrit unit NOCALL NOCALL-1 A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 B7 B8
unwanted units can be omitted starting from the left

example for coef:
 telemetrit coef NOCALL NOCALL-1 A1a A1b A1c A2a A2b A3a A3b A3c A4a A4b A4c A5a A5b
A5c
unwanted coefficients can be omitted starting from the left, they'll be set to 0

example for bitsense:

 telemetrit bitsens NOCALL NOCALL-1 project_name B1 B2 B3 B4 B5 B6 B7 B8
unwanted coefficients can be omitted starting from the right, they'll be set to 0
Build Date: Sep 3 2012 12:37:03

Figure 15 aprs_telemetrit usage

10 Experiments

10.1 Experiment Plan

Within this project, four different sets of experiments have been conducted. Design of the
experimentation phase was made according to the initial lab tests. The aim in this design was to
minimize the required time and was to emphasize the difference between solutions. The initial
experiment plan was to have three sets of experiments in three days; first day with 433 MHz band,
second day with 144 MHz band, and finally third day with both bands in lab environment.

Due to an antenna mismatch problem, these experiments had to be canceled and the data collected
in first day had to be ignored. After this incident, and after the antenna mismatch problem has been
solved, a more thorough experiment is created and executed. The plan was to first have an initial set of
non-lab experiments with all bands and equipment to verify the hardware and software, and to detect
and fix if any errors/problems to be found. This test is conducted in Kista wi th a maximum clear line-of-
sight of about 650 meters. Although some data was collected in these tests, they were only used to
optimize the software and hardware for the latter experiments. After the Kista testing a little
optimization is made to software, decreasing the MTU of transmitted packets, therefore decreasing the
probability of a packet drop due to noise.

After this verification stage, the initial plan is revised and executed. The details of this plan are as
below. All experiments have been done in an open field with clear line of sight. Some of the experiments
below are marked as optional, which means they will be performed only if the time allows. Else they
were to be put under the title of further work.

10.1.1 Experiments with radiotftp

These experiments will cover the radiotftp and radiotftp_process solutions. For testing, two Ubuntu
laptops will be set up to use radiotftp to transfer files. Builtin data logger of radiotftp will be used to
collect the below stated data. No experiments will be done with radiotftp_process, since their base
codes –therefore the protocol stacks and timings- are the same. Transfer sizes are chosen as single and
16 packets to observe the differences between single packet and many-packet transfers. Since we are
using amateur radio bands, we are actually not allowed to use ~100% channel utilization, but in the
name of science we will test it. In the application notes for Radiometrix devices, it is said that lower
baud rates have a direct impact on the range. Therefore we are going to use fixed average baud rates.

IL222X SoC Master Thesis 5-Jan-2014
Final Report 34/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

The transmission power will be fixed to 10 mW (10 dBm). The VHF frequency to be used is 433.925 Mhz,
and UHF frequency to be used will be decided in field (which will be between 144 and 146 MHz). And
finally, for the sake of simplicity transfers will be declared as disconnected, after a certain amount of
consecutive retransmissions. For our experiments, this amount is designated as 8. This number is chosen
through several lab tests to ensure temporal noises do not cause disconnections. Measurements will be
done four times and will be averaged for increased accuracy. They will be performed separately for
Bim2A and UHX1.

 Parameters:
1. Distance
2. Transfer Size

 Input Range:
1. Distance = [2m:2km] (7 points)
2. Transfer Size = [127 bytes, 16*128 bytes],

 Outputs:
1. Transfer Time
2. Throughput
3. Packet Error Rate
4. Energy consumption
5. Power consumption

-Throughput will be derived from transfer time.
-Packet error rate will be derived from number of retransmissions.
-Energy consumption will be derived from datasheet data and amount of Tx enabled/disabled time.
-Power consumption will be derived from energy consumption by differentiating over transfer time.

10.1.2 Experiments with radio_tunnel & soundmodem

These experiments will cover the radio_tunnel and soundmodem solutions. Below explained
measurements will be done with radio_tunnel and soundmodem separately. For radio_tunnel baud
rates will be fixed to 19200 for Bim2A and 2400 for UHX1. For soundmodem the bitrate is already fixed
to 1200 bps due to the usage of AFSK. The transfer sizes are chosen as 127 bytes and 2 kbytes to
observe the difference between single packet and many packet transactions (MTU is 255 bytes). The
transmission power will be fixed to 10 mW (10 dBm). The VHF frequency to be used is 433.925 Mhz, and
UHF frequency to be used will be decided in field (which will be between 144 and 146 MHz).
Measurements will be done four times to increase accuracy.

 Parameters:
1. Transfer Size

 Input Range:
1. Transfer Size = [127 bytes, 2048 bytes]

 Outputs:
1. Transfer time
2. Throughput
3. Instantaneous Channel Utilization
4. Average Channel Utilization
5. Energy Consumption

IL222X SoC Master Thesis 5-Jan-2014
Final Report 35/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

6. Power Consumption

-Throughput will be derived from transfer time.
-Energy consumption will be derived from datasheet data and amount of Tx enabled/disabled time
-Power consumption will be derived from energy consumption by differentiating over transfer time
-Instantaneous channel utilization will be derived from measuring the Tx enabled/disabled time
-Average channel utilization will be derived from instantaneous channel utilization by integrating over
transfer time.

10.1.3 General Experiments with Bim2A and UHX1

Without the use of any software, the performances of Bim2A and UHX1 will be measured. To do
this, the carrier signal will carry no information but a complete set of zeros (grounded Tx). On the
receiver side, RSSI output of the radiometrix devices will be measured. Later on, this data can be used to
map RSSI level to the performance data obtained in first two experiments.

 Parameters:
1. Distance

 Input Range:
1. Distance = [2m:2km] (7 points)

 Outputs:
1. Rssi Voltage
2. Rssi

-Only the signal strength will be tested in the experiment.
-Rssi will be derived from using the RSSI voltage data by mapping it with the plots provided in datasheet
(if provided).

10.1.4 General Experiments for UHX1 (Optional)

Without the use of any software, the performance of UHX1 will be measured. To do this, the carrier
signal will carry no information but a complete set of zeros (grounded Tx). On the receiver side, RSSI
output of the Radiometrix devices will be measured. Later on, this data can be used to map Tx Power
level to the performance data obtained in first three experiments.

 Parameters:
1. Distance
2. Tx Power (dBm)

 Input Range:
1. Distance = [2m:inf*] (16 points)
2. Tx Power = [10:1:30] (10 to 30 dBm with 1 dBm steps)

-Only the signal strength will be tested in this experiment.
-Rssi will be derived from using the RSSI voltage data and mapping it with the plots provided in
datasheet.
-Distance will be increased exponentially.

IL222X SoC Master Thesis 5-Jan-2014
Final Report 36/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

*inf means until the connection is lost, which means rssi is less than or equal to the carrier detect level.

10.2 Environment and Logging

As the experiment area, Riddarholmen in Gamla Stan is chosen. This location was able to provide a
maximum a 2.1 kilometers of clear line-of-sight without even the interruption of Fresnel zones. The
experiment map can be seen below in Figure 16. The marked location zero is the fixed base station, and
the other locations are the mobile station test points. A file transfer was made several times with
different parameters from points 1-7 to 0. Mobile station sent the designated files to the fixed station.
Note that during the transfers the mobile station was also fixed. The positions were saved by using the
built-in GPS in a Nokia E5-00 mobile phone.

Test Point Distance to Base Station (±10 meters)

1 395 meters
2 700 meters
3 1050 meters
4 1390 meters
5 1820 meters
6 1950 meters
7 2120 meters

Table 1 Distances of test points to base station in Riddarholmen

IL222X SoC Master Thesis 5-Jan-2014
Final Report 37/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Figure 16 Map of Gamla Stan Experiments

In the open field only radiotftp was tested due to the time requirement and also due to the

immobility of the other solutions. Radiotftp solution was tested with both bands trying find out the
average transfer time, average packet drop percentage and maximum distance that Radiometrix devices
can reach with a fixed power (10 milliwatts in our case). Radiotftp_solution was not included in
experiments since the protocol and the hardware it used was the same with Radiotftp, but i t was
verified to be working. Radiotunnel and Soundmodem were only tested in lab environment, since they
required much more time for a transfer relative to the radiotftp. And finally APRS solution was tested
only by sending out some sample telemetry data with aprx software.

The radiotunnel and radiotftp software was modified to log events such as, TX/RX switching, packet
drop, packet transmission, request reception and error transmission and error reception. The sample of
such event log can be seen in Table 4 and the format can be seen in Table 5 in Appendix C. For other
solutions UNIX time facilities were used for time measurement [67]. After the data collection, a utility
was written to facilitate parsing of data logs and generation of plots and tables [68].

IL222X SoC Master Thesis 5-Jan-2014
Final Report 38/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

11 Results

After collecting the data a lot of time was spent to plot them into meaningful numbers and statistics.
Depending on the point of view we have gathered a lot of interesting data. Below are the discussions
regarding these data. Note that all raw data is currently accessible in the author’s home page [69].

Below are the plots and tables that summarize some key measurements of these experiments with
radiotftp solution and general experiments with other solutions. The disconnected cases are discarded
from the plots, therefore fewer samples can be observed in some of these plots. In any case these plots
also explain some important points about 144 and 434 Mhz bands irrelevant to the protocol that is used.

 Transfer Time 127 bytes Transfer Time 2 kbytes

radiotftp uhx1 00:08.915 00:21.727

radiotftp bim2a 00:00.873 00:02.414

radiotunnel uhx1 02:56.029 12:09.429

radiotunnel bim2a 02:00.120 02:05.261

soundmodem 02:09.707 02:59.324

Table 2 Average transfer times with minimum distance between transceivers

Figure 17 Transfer time plots for single packet delivery

Figure 18 Transfer time plots for many-packet delivery

In 434 Mhz experiments which are performed with Bim2a, it can be observed that in 2 kbytes

experiments almost all trials went into disconnection, even from the first location with distance of 400
meters (Figures 20 & 21). Therefore we can say that, if multi-packet transactions are going to be
performed with 434 Mhz band, a greater consecutive retransmit limit is required (more than 8). On the
other hand, when we consider the ideal conditions case -1 meter distance-, multi-packet transactions
are better to avoid the effects of overhead and it gives more bitrate (Figures 18,19 & 22,23).

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0 1 2 3 4 5 6 7

Transfer Time for 144 Mhz with 127 bytes (sec)
Transfer Time for 433 Mhz with 127 bytes (sec)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

0 1 2 3 4 5 6 7

Transfer Time for 144 Mhz with 2 kbytes (sec)
Transfer Time for 433 Mhz with 2 kbytes (sec)

IL222X SoC Master Thesis 5-Jan-2014
Final Report 39/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Figure 19 Error rate plots for single packet delivery

Figure 20 Error rate plots for many-packet delivery

In 434 Mhz band, the results of 127 byte experiments point to one important conclusion. With
distance, the error rate increases a lot (Figures 20 & 22). And after about 400 meters, the error rate
becomes too much that it impossible to transfer files. And even with 400 meters distance, the error rate
is too high that, 144 Mhz band has lower transfer times compared to 434 Mhz band (even with the
higher baud rate advantage). The other important point is that we observe connection with about 1400
meters distance. That is the location 4 with higher ground with respect to others. We see that effect of
higher ground helps overcome the distance effect. But as can be seen from Figure 19 Error rate plots for
single packet delivery the error rate is just too high to be feasible enough for actual use. The 2 kbytes
experiments also support this with disconnection in all tests from the same location.

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7

Error Rate for 144 Mhz with 127 bytes (percent)

Error Rate for 433 Mhz with 127 bytes (percent)

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7

Error Rate for 144 Mhz with 2 kbytes (percent)

Error Rate for 433 Mhz with 2 kbytes (percent)

IL222X SoC Master Thesis 5-Jan-2014
Final Report 40/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Figure 21 Bitrate plots for single packet delivery

Figure 22 Bitrate plots for many-packet delivery

In 144 Mhz experiments which are performed with Uhx1, first thing to observe is the existence of a
connection even from 2100 meters with a low error rate of about 3.5 percent. Other thing that we
observe is; error rate does not change too much with respect to distance. This also brings a stable
transfer time and bitrate with respect to distance. These observations tell that the fade margin of the
UHX1s is better than Bim2As (see the fall in RSSI and increase in error rate of both devices, Table 3,
Figure 19 Error rate plots for single packet delivery and Figure 20 Error rate plots for many-packet
delivery. The effect of single-packet transactions can also be observed in 144 MHz experiments, adding
overhead delay.

Finally, there is one last important point about all radiotftp experiments. The fifth location which is
about 1820 has no values in any of the plots. That’s because there was actually an obstruction in the
signal path. Although the obstruction was observable, the experiments continued also at this point to
observe the effect of obstructions. This obstruction in our case was some woods, which can also be
observed in the map in Figure 16. The effect of this obstruction was complete loss of signal in both
bands.

The fourth location with a distance of about 1400 meters was also different from others; it was
higher than the others. The increase in RSSI and drop in error rates in fourth location can be tied to this
cause.

These observations emphasize the importance of one thing, which is the importance of having a
clear line-of-sight, which may be obtained by having a high ground.

Location RSSI (UHX1) RSSI (Bim2a)

No Signal Applied 64 0.28
0 (Base) 196 0.48

1 136 0.40
2 122 0.30
3 116 0.31
4 133 0.38

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7

Bitrate for 144 Mhz with 127 bytes…
Bitrate for 433 Mhz with 127 bytes…

0

50

100

150

200

250

0 1 2 3 4 5 6 7

Bitrate for 144 Mhz with 2 kbytes (bytes/sec)
Bitrate for 433 Mhz with 2 kbytes (bytes/sec)

IL222X SoC Master Thesis 5-Jan-2014
Final Report 41/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

5 103 N/A
6 126 N/A
7 121 N/A
Table 3 RSSI readings from various locations with UHX1 and Bim2A

12 Conclusions

Regarding the whole project we can say that it was a successful project, and it is indeed possible to
use VHF/UHF bands for wireless sensor network uplinks with more than one different implementations
for a relatively low financial cost. It was also interesting to explore different bands and/or protocols and
their effects. For example; the increase in throughput and the decrease in range with the use of higher
frequency were interesting. The Contiki integration is also an interesting outcome of the project due to
the removal of the gateway from the process. As for the project goals, the project has successfully
reached its goals to implement a feasible IP link with less than 100 mW transmit power which can reach
over 2km with only 10 mW transmit power.

Apart from these general points, important conclusions that are obtained from the experiments are
as below. After the collection of data, via various utilities the raw data have been parsed and processed.
Although many of the results were expected, there were also few which were unexpected.

Concerning only radiotftp:

 The effect of overhead can be heavily observed. On the other hand, many-packet
transactions are statistically more probable to disconnect (‘Experiments with radiotftp’).

 The bitrate difference in bands shows itself also in the final throughput.

 While using the 2 meter band, the distance does not seem to have much effect. On the
other hand, obstructions on the wave path cause a lot of distortion.

 While using the 70 cm band, the received power decays much more relative to the 2 meter
band and therefore observed to have a much shorter range.

 In both bands having a high ground has a good impact on signal strength.
Concerning all solutions together:

 Radiotftp solution seems to have much greater bitrate compared to others, but this is simply
an effect of utilizing the channel more efficiently. On the other hand, other solutions can’t
use the channel this efficiently, even if they wanted to.

 The radiotunnel solution shows almost an exponential growth in transfer time with respect
to the file size. This is due to the manual forced drop of the packets to ensure half-duplex
operation.

 Soundmodem proved itself to be a faster option compared to radiotunnel, even with its low
raw bitrate (1200 bps).

 If the radiotunnel is not to be improved to act as an half-duplex interface, and if
soundmodem solution can be improved to use radiometrix devices, then radiotunnel
solution can deprecated.

 Some suggestions could be made according to some requirements:
o If higher throughput is required; radiotftp,
o If easy-setup and easy API is required; radiotunnel
o If standardization and easy API is required; soundmodem
o If standardization and set-it-and-forget-it kind of application is required; APRS

solution would be suggested.

IL222X SoC Master Thesis 5-Jan-2014
Final Report 42/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

As can be observed, each solution addresses a specific requirement. Therefore there is no t one
`best` solution in this project.

IL222X SoC Master Thesis 5-Jan-2014
Final Report 43/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

13 Future Work

Below are some points that, future developers and researchers should consider. These are not only
suggestions, but also guidelines for further development.

Radiotftp

 The radiotftp code base should be improved to have multiple-size queues and multiple
timers. It already supports it, but it is not a default.

 The radiotftp code should be cleaner for further developers. It should look like an open API -
which, it is-, and there should be an open documentation for it.

 The radiotftp solution can be optimized more by changing the place of the delays and/or
replacing the delays with non-busy waits.

Radiotftp_process

 The radiotftp_process code could be optimized to work with higher baudrates than 2400. So
that it would consume less CPU time while transmission.

Radiotunnel

 The radiotunnel code should not be improved anymore, but instead, an actual device driver
should be written for fine tuning.

Soundmodem

 The soundmodem solution should be moved on to work with Radiometrix devices. In such
way, a more portable hardware can be obtained. And the users won’t need to worry about
handheld radios’ power consumption.

APRS
 If possible, the APRS solution should also be tested in open field and packet loss should be

recorded.
Others

 The uhx1_programmer can be extended to be able to program the frequency of the UHX1
devices, so that frequency can be selected while running to avoid interference [70].

 The devtag library could be incorporated to use USB device tags instead of USB device
names to select the proper USB FTDI device [71].

 A team has already started working on an implementation of a Delay Tolerant Network
(DTN) based on this project’s outcomes [18].

IL222X SoC Master Thesis 5-Jan-2014
Final Report 44/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

14 References

[1] Robert Olsson, ‘Herjulf Mote’. [Online]. Available:
http://herjulf.se/products/WSN/sensors/General-Description-v1.4.txt. [Accessed: 08-February-
2013].

[2] ‘IEEE 802.15.4’. [Online]. Available: http://www.ieee802.org/15/pub/TG4.html. [Accessed: 21-
February-2012].

[3] ‘The Contiki OS’. [Online]. Available: http://www.contiki-os.org/. [Accessed: 29-February-2012].
[4] ‘Wireless Sensor Network Topologies | Sensors’. [Online]. Available:

http://www.sensorsmag.com/networking-communications/wireless-sensor-network-topologies-
778. [Accessed: 08-February-2013].

[5] ‘ATmega128RFA1- Atmel Corporation’. [Online]. Available:
http://www.atmel.com/devices/ATMEGA128RFA1.aspx. [Accessed: 21-February-2012].

[6] ‘IL2213 WSN-Projects Fall 2011’. [Online]. Available:
http://www.tslab.ssvl.kth.se/csd/files/wsn/index.html. [Accessed: 21-February-2012].

[7] Prodromos Mekikis, Guodong Guo, Stefano Vignati, Saad Fakher, Ibrahim Kazi, and Mussie
Tesfaye, ‘Contiki-OS on Atmega128RFA1’. KTH, 20111212, Available at
http://www.tslab.ssvl.kth.se/csd/files/wsn/contiki-final-report.pdf.

[8] Alp Sayin, Angeline Thiruthuvadoss, Hesham Omran, Junzhe Tian, Rui Li, and Yihui Wang, ‘TinyOS
on Atmega128RFA1’. KTH, 20111213, Available at
http://www.tslab.ssvl.kth.se/csd/files/wsn/tinyos-final-report.pdf.

[9] P. Levis, ‘TinyOS Programming’. 20061027, Available at http://www.tinyos.net/tinyos-
2.x/doc/pdf/tinyos-programming.pdf.

[10] D. Gay, P. Levis, D. Culler, and E. Brewer, ‘nesC 1.1 Language Reference Manual’. 20030501,
Available at http://nescc.sourceforge.net/papers/nesc-ref.pdf.

[11] A. Dunkels, F. Österlind, and Z. He, ‘An adaptive communication architecture for wireless sensor
networks’, 2007, p. 335, DOI:10.1145/1322263.1322295, Available at
http://portal.acm.org/citation.cfm?doid=1322263.1322295.

[12] ‘PC Engines alix2d13 product file’. [Online]. Available: http://pcengines.ch/alix2d13.htm.
[Accessed: 21-February-2012].

[13] ‘Bifrost/Linux resources’. [Online]. Available: http://bifrost.slu.se/. [Accessed: 21-February-2012].
[14] ‘Voyage Linux | { x86 Embedded Linux = Green computing }’. [Online]. Available:

http://linux.voyage.hk/. [Accessed: 24-May-2012].
[15] ‘Raspberry Pi | An ARM GNU/Linux box for $25. Take a byte!’ [Online]. Available:

http://www.raspberrypi.org/. [Accessed: 08-February-2013].
[16] ‘Debian -- ARM Port’. [Online]. Available: http://www.debian.org/ports/arm/. [Accessed: 08-

February-2013].
[17] R. Olsson and J. Laas, Sensd. 20120610, Available at https://github.com/herjulf/sensd.
[18] Technology Transfer Alliance, ‘Technology Transfer Alliance WSN Team Fall 2012’, Technology

Transfer Alliance WSN Team Fall 2012. [Online]. Available:
http://ttaportal.org/menu/projects/wsn/fall-2012/.

[19] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees, and M. Welsh, ‘Deploying a
wireless sensor network on an active volcano’, Internet Computing, IEEE, vol. 10, no. 2, pp. 18 – 25,
April 2006, DOI:10.1109/MIC.2006.26.

[20] G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh, ‘Monitoring volcanic eruptions with a
wireless sensor network’, in Wireless Sensor Networks, 2005. Proceeedings of the Second European
Workshop on, 2005, pp. 108 – 120, DOI:10.1109/EWSN.2005.1462003.

IL222X SoC Master Thesis 5-Jan-2014
Final Report 45/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

[21] ‘Ranger : FreeWave Technologies’. [Online]. Available:
http://www.freewave.com/products/allproducts/rangerseries.aspx. [Accessed: 25-May-2012].

[22] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, ‘Wireless sensor networks for
habitat monitoring’, 2002, p. 88, DOI:10.1145/570738.570751, Available at
http://portal.acm.org/citation.cfm?doid=570738.570751.

[23] T. L. Dinh, W. Hu, P. Sikka, P. Corke, L. Overs, and S. Brosnan, ‘Design and Deployment of a Remote
Robust Sensor Network: Experiences from an Outdoor Water Quality Monitoring Network’, 2007,
pp. 799–806, DOI:10.1109/LCN.2007.39, Available at
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4367918.

[24] T. Naumowicz, R. Freeman, H. Kirk, B. Dean, M. Calsyn, A. Liers, A. Braendle, T. Guilford, and J.
Schiller, ‘Wireless Sensor Network for habitat monitoring on Skomer Island’, in Local Computer
Networks (LCN), 2010 IEEE 35th Conference on, 2010, pp. 882 –889,
DOI:10.1109/LCN.2010.5735827.

[25] ‘Part 97 - Amateur Radio’. [Online]. Available: http://www.arrl.org/part-97-amateur-radio.
[Accessed: 24-May-2012].

[26] ‘Definition: manchester code’. [Online]. Available: http://www.its.bldrdoc.gov/fs-1037/dir-
022/_3206.htm. [Accessed: 25-May-2012].

[27] A. Telephone and T. Company, Data sets 202S and 202T interface specification. The Company,
1976, Available at http://books.google.se/books?id=OX7zGgAACAAJ.

[28] ‘Multiplatform Soundcard Packet Radio Modem Driver Software’. [Online]. Available:
http://www.baycom.org/~tom/ham/soundmodem/. [Accessed: 25-May-2012].

[29] ‘Radiometrix - Radio Modules - RF Modules - Wireless Modules | BiM2A’. [Online]. Available:
http://www.radiometrix.com/content/bim2a. [Accessed: 21-February-2012].

[30] ‘Radiometrix - Radio Modules - RF Modules - Wireless Modules | UHX1’. [Online]. Available:
http://www.radiometrix.com/node/184. [Accessed: 25-May-2012].

[31] ‘Radiometrix - Error Performance of BIM Transceiver with RS232 Interface’. [Online]. Available:
http://www.rfmodules.com.au/rm/apps/apnt101.htm. [Accessed: 17-February-2013].

[32] ‘Ethernet Technologies - DocWiki’. [Online]. Available:
http://docwiki.cisco.com/wiki/Ethernet_Technologies. [Accessed: 25-May-2012].

[33] William A. Beech, Douglas E. Nielsen, and Jack Taylor, ‘AX.25 Link Access Protocol for Amateur
Packet Radio’. Available at http://www.tapr.org/pdf/AX25.2.2.pdf.

[34] Information Sciences Institute University of Southern California, ‘INTERNET PROTOCOL’.
September-1981, Available at http://www.ietf.org/rfc/rfc791.txt.

[35] IETF, ‘Internet Protocol, Version 6 (IPv6) Specification’. [Online]. Available:
http://www.ietf.org/rfc/rfc2460.txt. [Accessed: 25-May-2012].

[36] APRS Working Group, ‘APRS Protocol Reference Version 1.0’. Tucson Amateur Radio Corp, 2000,
Available at http://www.aprs.org/doc/APRS101.PDF.

[37] ‘Google Maps APRS’. [Online]. Available: http://aprs.fi/. [Accessed: 25-May-2012].
[38] ‘User Datagram Protocol’. [Online]. Available: http://www.ietf.org/rfc/rfc768.txt. [Accessed: 26-

May-2012].
[39] ‘RFC 793 - Transmission Control Protocol’. [Online]. Available: http://tools.ietf.org/html/rfc793.

[Accessed: 04-February-2013].
[40] J. Postel and J. Reynolds, ‘File Transfer Protocol (FTP)’, 19851001. [Online]. Available:

http://www.ietf.org/rfc/rfc959.txt. [Accessed: 08-February-2013].
[41] IETF Network Working Group, ‘Hypertext Transfer Protocol -- HTTP/1.1’. Available at

http://www.ietf.org/rfc/rfc2616.txt.

IL222X SoC Master Thesis 5-Jan-2014
Final Report 46/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

[42] ‘THE TFTP PROTOCOL (REVISION 2)’. [Online]. Available: http://www.ietf.org/rfc/rfc1350.txt.
[Accessed: 26-May-2012].

[43] M. Krasnyansky and M. Yevmenkin, ‘Universal TUN/TAP device driver’. [Online]. Available:
http://www.kernel.org/doc/Documentation/networking/tuntap.txt. [Accessed: 25-May-2012].

[44] ‘Digipeater - APRSWiki’. [Online]. Available: http://info.aprs.net/index.php?title=Digipeater.
[Accessed: 29-February-2012].

[45] Alan Crosswell, ‘APRS from the Bottom Up’. 20021230, Available at
http://www.users.cloud9.net/~alan/ham/aprs/aprs.pdf.

[46] ‘draft-ietf-core-coap-12’. [Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-core-
coap/. [Accessed: 15-October-2012].

[47] L. Richardson, RESTful web services. Farnham: O’Reilly, 2007, ISBN: 9780596529260.
[48] M. Kovatsch, S. Duquennoy, and A. Dunkels, ‘A Low-Power CoAP for Contiki’, in Mobile Adhoc and

Sensor Systems (MASS), 2011 IEEE 8th International Conference on , 2011, pp. 855 –860,
DOI:10.1109/MASS.2011.100.

[49] International Organization for Standardization, International Electrotechnical Commission, and
Institute of Electrical and Electronics Engineers, Information technology telecommunications and
information exchange between systems-- local and metropolitan area networks-- specific
requirements. Part 11, Wireless LAN medium access control (MAC) and physical layer (PHY)
specifications = Technologies de l’information : télécommunications et échange d’information entre
systèmes-- réseaux locaux et métropolitains-- exigences spécifiques. Partie 11, Spécifications du
contrôle d’accès du milieu sans fil (MAC) et de la couche physique (PHY). Geneva; New York: ISO :
IEC ; Institute of Electrical and Electronics Engineers, 2012, ISBN: 9780738180076 0738180076,
Available at http://ieeexplore.ieee.org/servlet/opac?punumber=6361246.

[50] ‘MAAS-AHT-2-UV-Handfunkgeraet-VHF-UHF’. [Online]. Available: http://maas-
elektronik.de/MAAS-AHT-2-UV-Handfunkgeraet-VHF-UHF.2.html. [Accessed: 25-May-2012].

[51] ‘YAESU FT-8900R’. [Online]. Available:
http://www.yaesu.com/indexvs.cfm?cmd=DisplayProducts&ProdCatID=106&encProdID=0C4855A
DE6394D514EAABAE148B93F5C&DivisionID=65&isArchived=0. [Accessed: 25-May-2012].

[52] ‘The OSI Model’s Seven Layers Defined and Functions Explained’. [Online]. Available:
http://support.microsoft.com/kb/103884. [Accessed: 29-February-2012].

[53] ‘Aprx.en – HamFi’. [Online]. Available: http://wiki.ham.fi/Aprx.en#Installation. [Accessed: 25-May-
2012].

[54] The Xastir Group, ‘XastirWiki’. [Online]. Available: http://www.xastir.org/wiki/Main_Page.
[55] Apache Foundation, Apache Http Server Project. Available at http://httpd.apache.org/.
[56] GNU GPL, GNU Wget. Available at http://www.gnu.org/software/wget/.
[57] T. Ylonen and S. Lehtinen, ‘SSH File Transfer Protocol’, 20011001. [Online]. Available:

http://filezilla-project.org/specs/draft-ietf-secsh-filexfer-02.txt. [Accessed: 08-February-2013].
[58] Future Technology Devices International Limited (FTDI), ‘TTL to USB Serial Converter Range of

Cables Datasheet’. 20100902, Available at
http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_TTL-232R_CABLES.pdf.

[59] IEEE, ‘POSIX IEEE Std 1003.1TM-2008’. Available at
http://pubs.opengroup.org/onlinepubs/9699919799/.

[60] IEEE, ‘stdint.h - integer types’. Available at
http://pubs.opengroup.org/onlinepubs/007904975/basedefs/stdint.h.html.

IL222X SoC Master Thesis 5-Jan-2014
Final Report 47/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

[61] Alp Sayin, ‘Manual for Setting up Radiotftp’. Available at
http://alpsayin.com/master_thesis/docs/Manual%20for%20Setting%20Up%20Radiotftp.pdf,
[accessed August 28, 2012].

[62] ‘The User-mode Linux Kernel Home Page’. [Online]. Available: http://user-mode-
linux.sourceforge.net/old/. [Accessed: 29-August-2012].

[63] ‘Universal TUN/TAP driver - FAQ’. [Online]. Available: http://vtun.sourceforge.net/tun/faq.html.
[Accessed: 25-May-2012].

[64] ‘Setting up the network’, User Mode Linux. [Online]. Available: http://user-mode-
linux.sourceforge.net/old/networking.html. [Accessed: 29-August-2012].

[65] ‘LinuxHam’. [Online]. Available: http://www.linux-ax25.org/wiki/Main_Page. [Accessed: 26-May-
2012].

[66] Alp Sayin, ‘Manual for Setting up Soundmodem’. Available at
http://alpsayin.com/master_thesis/docs/Manual%20for%20Setting%20Up%20Soundmodem.pdf.

[67] ‘time(2) - Linux man page’, time(2) - Linux man page, 20121709. [Online]. Available:
http://linux.die.net/man/2/time.

[68] ‘radio-event-reader’, GitHub. [Online]. Available: https://github.com/alpsayin/radio-event-reader.
[Accessed: 29-September-2012].

[69] Alp Sayin, ‘Experiment Data for VHF/UHF Wireless Uplink Solutions for Remote Wireless Sensor
Networks’. [Online]. Available: http://alpsayin.com/master_thesis/data/. [Accessed: 08-February-
2013].

[70] WSN Team 2012, Radio-Daemon. Available at https://github.com/WSN-2012/Radio-Daemon,
[accessed November 28, 2012].

[71] J. Låås, devtag. Available at https://github.com/jelaas/devtag, [accessed November 28, 2012].

IL222X SoC Master Thesis 5-Jan-2014
Final Report 48/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

15 Appendix A

15.1 Sources

Master Thesis Webpage:
http://alpsayin.com/vhf_uhf_uplink_solutions_for_remote_wireless_sensor_networks

Radiotftp Source:
https://github.com/alpsayin/radiotftp

Modified Sensd Source:
https://github.com/alpsayin/sensd

Original Sensd Source:
https://github.com/herjulf/sensd

Radiotftp_process Source:
https://github.com/alpsayin/radiotftp_process

Radiotunnel Source:
https://github.com/alpsayin/radiotunnel

APRS Telemetrit Source:
https://github.com/alpsayin/aprs_telemetrit

UHX1 R/N Calculator Source:
https://github.com/alpsayin/uhx1_rn_calculator

UHX1 Programmer Source:
https://github.com/alpsayin/uhx1_programmer

UHX1 Board PCB Design Source:
https://github.com/alpsayin/uhx1_uart_pcb

Bim2A Board PCB Design Source:
https://github.com/alpsayin/bim2a_uart_pcb

Radio Event Reader Source:
https://github.com/alpsayin/radio-event-reader

Old Software Repository in Google Code:
http://code.google.com/p/kth-wsn-longrange-radio-uplink/

TinyOS Port for Atmega128Rfa1 Source:
http://code.google.com/p/kth-wsn-atmega128rfa1-tinyos/

http://alpsayin.com/vhf_uhf_uplink_solutions_for_remote_wireless_sensor_networks
http://alpsayin.com/vhf_uhf_uplink_solutions_for_remote_wireless_sensor_networks
https://github.com/alpsayin/radiotftp
https://github.com/alpsayin/sensd
https://github.com/herjulf/sensd
https://github.com/alpsayin/radiotftp_process
https://github.com/alpsayin/radiotunnel
https://github.com/alpsayin/aprs_telemetrit
https://github.com/alpsayin/uhx1_rn_calculator
https://github.com/alpsayin/uhx1_programmer
https://github.com/alpsayin/uhx1_uart_pcb
https://github.com/alpsayin/bim2a_uart_pcb
https://github.com/alpsayin/bim2a_uart_pcb
https://github.com/alpsayin/radio-event-reader
http://code.google.com/p/kth-wsn-longrange-radio-uplink/
http://code.google.com/p/kth-wsn-atmega128rfa1-tinyos/

IL222X SoC Master Thesis 5-Jan-2014
Final Report 49/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

16 Appendix B

16.1 State Machines and Code Segments

Uart_interrupt_handler()
{
 RaiseFlag()
 SaveReceivedByte()
}
Main()
{
While(1)
{

//…other tasks
performTasks()

If(Byte_received)
{
 putByteIntoManchesterBuffer(newByte)
 if(newByte is END_OF_PACKET)
 {
 openManchesterPacketIntoAX25Buffer(&src, &dst, &content)
 if(validPacket)
 {
 openUDPIPv4Packet(&src, &dst, &src_port, &dst_port, &content)
 if(validPacket)
 {
 udpPacketMultiplexer(src,dst,srcport,dstport,content)

}
}

}

//…other tasks
performTasks()

If(aPacketIsPendingToBeSent)
{
 If(notInTheMiddleOfReception)
 {
 TransmitNextQueuedPacket()

}
}

}
}

Figure 23 Pseudocode showing the workflow of the IP stack implementation of radiotftp

IL222X SoC Master Thesis 5-Jan-2014
Final Report 50/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Reset Idle

Save Byte

New byte received

Manchester
Decode

Open
AX.25
Frame

Open
UDP/IPv6

Packet

Valid Packet

Port
Multiplexer

Valid Packet for me

Valid decoding

End-of-Packet

Router
Routine

Valid packet for someone else

Checksum error

Checksum error

Non-manchester encoded
character found

Figure 24 Radiotftp_process Receive FSM diagram

IL222X SoC Master Thesis 5-Jan-2014
Final Report 51/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Reset Idle

Create
UDP/IPv6

Packet

Queue new application data

Create
AX.25 UI
Frame

No error found

Manchester
Encode

No error found

Wait

No error found

Transmit

Transceiver free

No more packets

Return error
code to

application

Found error

Found error

Found error

In the middle of reception
Or courtesy wait

More packets to be transmitted

Figure 25 Radiotftp_process send FSM diagram

#include <stdio.h>

#include <avr/io.h>

#include <avr/iom128rfa1.h>

#include <avr/interrupt.h>

#include <util/delay.h>

#include "contiki.h"

#include "contiki-conf.h"

#include "contiki-net.h"

#include "contiki-lib.h"

#include "dev/rs232.h"

#include "radiotftp.h"

PROCESS(measurement_process, "Measurement Process");

AUTOSTART_PROCESSES(&measurement_process, &radiotftp_process);

PROCESS_THREAD(measurement_process, ev, data)

IL222X SoC Master Thesis 5-Jan-2014
Final Report 52/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

{

 static uint32_t counter=0;

 static uint16_t numBytes=0;

 static uint64_t fibo[3] = {0, 1, 1};

 static struct etimer measurement_timer;

 static uint8_t fake_measurement_string[450];

 PROCESS_BEGIN();

 etimer_set(&measurement_timer, CLOCK_SECOND*2);

 while(1)

 {

 PROCESS_WAIT_EVENT();

 counter++;

 fibo[2]=fibo[1]+fibo[0];

 numBytes=sprintf(fake_measurement_string,

 "Some Data: fibonacci(%d)=",

 counter);

 numBytes+=sprintf(fake_measurement_string+numBytes,

 "%u [Alp Sayin, KTH Royal Institute of Technology]\n",

 fibo[0]);

 printf("%s", fake_measurement_string);

 fibo[0]=fibo[1];

 fibo[1]=fibo[2];

 radiotftp_setNumBytesToSend(numBytes);

 process_post_synch(&radiotftp_process,

 PROCESS_EVENT_COM,

 (void*)fake_measurement_string);

 etimer_set(&measurement_timer, CLOCK_SECOND*10);

 }

 PROCESS_END();

}

Figure 26 Sample Contiki Process computing Fibonacci Series

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <net/if.h>

#include <linux/if_tun.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/ioctl.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <arpa/inet.h>

#include <sys/select.h>

#include <sys/time.h>

#include <errno.h>

#include <stdarg.h>

#include "tun_alloc.h"

IL222X SoC Master Thesis 5-Jan-2014
Final Report 53/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

int tun_alloc(char* dev, int flags)

{

 struct ifreq ifr;

 int fd, err;

 char* clonedev = "/dev/net/tun";

 if((fd = open(clonedev, O_RDWR)) < 0)

 {

 return fd;

 }

 memset(&ifr, 0, sizeof(ifr));

 ifr.ifr_flags = flags; //IF_TUN or IFF_TAP, plus maybe IFF_NO_PI

 if(*dev)

 {

 strncpy(ifr.ifr_name, dev, IFNAMSIZ);

 }

 if((err = ioctl(fd, TUNSETIFF, (void*) &ifr)) < 0)

 {

 close(fd);

 return err;

 }

 strcpy(dev, ifr.ifr_name);

 return fd;

}
Figure 27 Code segment from tun_alloc.c, demonstrating the opening procedure of a Tun device

//TUNTAP DEVICE

if (FD_ISSET(tun_fd, &rfds))

{

 nread = read(tun_fd, read_buffer, sizeof(read_buffer));

 if (nread < 0)

 {

 perror("Reading from if interface");

 close(tun_fd);

 exit(EXIT_FAILURE);

 }

 printf("Read %d bytes from device %s\n", nread, tun_name);

 printAsciiHex(read_buffer, nread);

 /*

 * ping modifier for 10.0.0.4

 * simply swaps the last bytes of the ping packet's source and destination ips

 * and writes it back by setting the ICMP type 0

 */

#if 1

 for (i = 0; i < MODIFY_LIST_LENGTH; i++)

 {

 if (!memcmp(read_buffer + 16, modify[i], 4)) //ip match

 {

 if (read_buffer[9] == 1 && read_buffer[1] == 0)

 {

 if (read_buffer[20] == 8 && read_buffer[21] == 0)

IL222X SoC Master Thesis 5-Jan-2014
Final Report 54/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

 {

 read_buffer[nread] = read_buffer[15];

 read_buffer[12] = 10; //src

 read_buffer[13] = 0; //src

 read_buffer[14] = 1; //src

 read_buffer[15] = 2; //src

 read_buffer[16] = 10; //dst

 read_buffer[17] = 0; //dst

 read_buffer[18] = 1; //dst

 read_buffer[19] = 1; //dst

// read_buffer[20] = 0;

 write(tun_fd, read_buffer, nread);

 }

 }

 }

 }

#endif

Figure 28 Ping responder code segment from tunclient.c

int telemetry_postpoll(struct aprxpolls *app)
{
#if 0
 if (telemetry_time <= now.tv_sec) {
 telemetry_time += telemetry_interval;
 if (telemetry_time <= now.tv_sec)
 telemetry_time = now.tv_sec + telemetry_interval;
 telemetry_datatx();
 }

 if (telemetry_labeltime <= now.tv_sec) {
 telemetry_labeltime += telemetry_labelinterval;
 if (telemetry_labeltime <= now.tv_sec)
 telemetry_labeltime = now.tv_sec + 120;
 telemetry_labeltx();
 }
#endif
 return 0;
}

Figure 29 A simple fix to disable automated telemetry messages of aprx (function extracted from telemetry.c).

k=0
analog_value=16
digital_value=1
while :
telemetrit label SA0BXI SA0BXI-13 ANVAL NA NA NA NA DIG > /tmp/wxbeacon.txt
sleep 61
telemetrit coef SA0BXI SA0BXI-13 0 1 0 > /tmp/wxbeacon.txt
sleep 61
do
for((i=0; i<4; i++))
do
telemetrit data SA0BXI SA0BXI-13 $k $analog_value 0 0 0 0 $digital_value > /tmp/wxbeacon.txt
sleep 61
done
done

Figure 30 A simple shell script to automate the transmission of data as APRS telemetry

IL222X SoC Master Thesis 5-Jan-2014
Final Report 55/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

17 Appendix C

17.1 Event Log Format

$time [helloWorld->] Program Start
$time [TX->enabled] TX enabled/RX disabled

$time [RX->enabled] RX enabled/TX disabled

$time [wrq_request->$file] Received wrq request for $file
$time [connectionclose->$cause] Connection closed due to $cause

$time [connection_cancel->$cause] Connection canceled due to $cause
$time [put->$file] Sent wrq request for $file

$time [exit->] Program exit
$time [RETRANSMIT->$type] Retransmitting $type of packet

Table 4 Sample Log Format

1341681601.774328 [put->text2k.txt]
1341681601.874703 [TX->enabled]
1341681602.318331 [RX->enabled]
1341681602.759087 [TX->enabled]
1341681603.761352 [RX->enabled]
1341681604.787046 [RETRANSMIT->data]
1341681604.887233 [TX->enabled]
1341681605.881348 [RX->enabled]
1341681606.915194 [RETRANSMIT->data]
1341681607.015385 [TX->enabled]
1341681608.013341 [RX->enabled]
1341681609.043301 [RETRANSMIT->data]
1341681609.143489 [TX->enabled]
1341681610.137347 [RX->enabled]
1341681613.171422 [RETRANSMIT->data]
1341681613.271607 [TX->enabled]
1341681614.274311 [RX->enabled]
1341681616.299526 [RETRANSMIT->data]
1341681616.399711 [TX->enabled]
1341681617.395334 [RX->enabled]
1341681620.427672 [RETRANSMIT->data]
1341681620.527878 [TX->enabled]
1341681621.517350 [RX->enabled]
1341681623.555803 [RETRANSMIT->data]
1341681623.656008 [TX->enabled]
1341681624.627345 [RX->enabled]
1341681625.685871 [RETRANSMIT->data]
1341681625.786058 [TX->enabled]
1341681626.776325 [RX->enabled]
1341681629.813999 [RETRANSMIT->data]
1341681629.914199 [TX->enabled]
1341681630.910356 [RX->enabled]
1341681632.945202 [exit->]

Table 5 Sample event log extract

IL222X SoC Master Thesis 5-Jan-2014
Final Report 56/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

18 Appendix D

18.1.1 Data Collected in 144 MHz Experiments (UHX1)

18.1.1.1 Single Packet Transaction Experiments (127 Bytes)

Data Value Unit

Transfer Time 2.4141 seconds
Bitrate 52.6076 Bytes/second
Latency 0.019 Seconds/byte
Ideal number of transmissions 2 Packets
Number of transmissions 2 Packets
Number of receptions 2 Packets
Number of retransmissions 0 Packets
Tx Enabled Time 1.2999 Seconds
Rx Enabled Time 1.1141 Seconds
Error Rate 0 Percent
Success Rate 0 Percent
Energy Consumption 0.6212 Joules
Number of Samples 5 Transfers
Number of Disconnects 0 Transfers

Table 6 Results of transfer experiments with 127 bytes in location 0.

Data Value Unit

Transfer Time 2.4172 seconds
Bitrate 52.5401 Bytes/second
Latency 0.019 Seconds/bit
Ideal number of transmissions 2 Packets
Number of transmissions 2 Packets
Number of receptions 2 Packets
Number of retransmissions 0 Packets
Tx Enabled Time 1.2896 Seconds
Rx Enabled Time 1.1276 Seconds
Error Rate 0 Percent
Success Rate 0 Percent
Energy Consumption 0.6189 Joules
Number of Transfers 6 Transfers
Number of Disconnects 0 Transfers

Table 7 Results of transfer experiments with 127 bytes from location 1.

Data Value Unit

Transfer Time 5.8604 seconds
Bitrate 21.6709 Bytes/second
Latency 0.0461 Seconds/bit
Ideal number of transmissions 2 Packets
Number of transmissions 2.8889 Packets

IL222X SoC Master Thesis 5-Jan-2014
Final Report 57/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Number of receptions 2.8889 Packets
Number of retransmissions 0.8889 Packets
Tx Enabled Time 1.8603 Seconds
Rx Enabled Time 4.0001 Seconds
Error Rate 0.2037 Percent
Success Rate 0.7963 percent
Energy Consumption 1.1776 Joules
Number of Transfers 11 Transfers
Number of Disconnects 2 Transfers

Table 8 Results of transfer experiments with 127 bytes from location 2.

Data Value Unit

Transfer Time 6.6321 seconds
Bitrate 19.1493 Bytes/second
Latency 0.0522 Seconds/bit
Ideal number of transmissions 2 Packets
Number of transmissions 3.1429 Packets
Number of receptions 3.1429 Packets
Number of retransmissions 1.1429 Packets
Tx Enabled Time 2.0248 Seconds
Rx Enabled Time 4.6073 Seconds
Error Rate 0.1557 Percent
Success Rate 0.8443 percent
Energy Consumption 1.3122 Joules
Number of Transfers 18 Transfers
Number of Disconnects 4 Transfers

Table 9 Results of transfer experiments with 127 bytes from location 3.

Data Value Unit

Transfer Time 3.6759 seconds
Bitrate 34.5494 Bytes/second
Latency 0.0289 Seconds/bit
Ideal number of transmissions 2 Packets
Number of transmissions 2.3333 Packets
Number of receptions 2.3333 Packets
Number of retransmissions 0.3333 Packets
Tx Enabled Time 1.5393 Seconds
Rx Enabled Time 2.1365 Seconds
Error Rate 0.1111 Percent
Success Rate 0.8889 percent
Energy Consumption 0.8336 Joules
Number of Transfers 14 Transfers
Number of Disconnects 2 Transfers

Table 10 Results of transfer experiments with 127 bytes from location 4.

Data Value Unit

IL222X SoC Master Thesis 5-Jan-2014
Final Report 58/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Transfer Time N/A seconds
Bitrate N/A Bytes/second
Latency N/A Seconds/bit
Ideal number of transmissions 2 Packets
Number of transmissions N/A Packets
Number of receptions N/A Packets
Number of retransmissions N/A Packets
Tx Enabled Time N/A Seconds
Rx Enabled Time N/A Seconds
Error Rate N/A Percent
Success Rate N/A percent
Energy Consumption N/A Joules
Number of Transfers 4 Transfers
Number of Disconnects 4 Transfers

Table 11 Results of transfer experiments with 127 bytes from location 5.

Data Value Unit

Transfer Time 3.1727 seconds
Bitrate 40.0290 Bytes/second
Latency 0.0250 Seconds/bit
Ideal number of transmissions 2 Packets
Number of transmissions 2.2000 Packets
Number of receptions 2.2000 Packets
Number of retransmissions 0.2000 Packets
Tx Enabled Time 1.4162 Seconds
Rx Enabled Time 1.7565 Seconds
Error Rate 0.0667 Percent
Success Rate 0.9333 percent
Energy Consumption 0.7419 Joules
Number of Transfers 17 Transfers
Number of Disconnected 2 Transfers

Table 12 Results of transfer experiments with 127 bytes from location 6.

Data Value Unit

Transfer Time 4.1403 seconds
Bitrate 30.6741 Bytes/second
Latency 0.0326 Seconds/bit
Ideal number of transmissions 2 Packets
Number of transmissions 2.4667 Packets
Number of receptions 2.4667 Packets
Number of retransmissions 0.4667 Packets
Tx Enabled Time 1.6138 Seconds
Rx Enabled Time 2.5266 Seconds
Error Rate 14.44 Percent
Success Rate 85.56 percent
Energy Consumption 0.9083 Joules

IL222X SoC Master Thesis 5-Jan-2014
Final Report 59/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Number of Transfers 15 Transfers
Number of Disconnects 0 Transfers

Table 13 Results of transfer experiments with 127 bytes from location 7.

18.1.1.2 Many Packet Transaction Experiments (2 Kbytes)

Data Value Unit

Transfer Time 21.7267 seconds
Bitrate 94.2619 Bytes/second
Latency 0.0106 Seconds/bit
Ideal number of transmissions 16 Packets
Number of transmissions 16 Packets
Number of receptions 16 Packets
Number of retransmissions 0 Packets
Tx Enabled Time 14.7241 Seconds
Rx Enabled Time 7.0026 Seconds
Error Rate 0 Percent
Success Rate 1 percent
Energy Consumption 6.3618 Joules
Number of Transfers 6 Transfers
Number of Disconnects 1 Transfers

Table 14 Results of transfer experiments with 2 kbytes in location 0.

Data Value Unit

Transfer Time 21.7249 seconds
Bitrate 94.2697 Bytes/second
Latency 0.0106 Seconds/bit
Ideal number of transmissions 16 Packets
Number of transmissions 16 Packets
Number of receptions 16 Packets
Number of retransmissions 0 Packets
Tx Enabled Time 14.5769 Seconds
Rx Enabled Time 7.1480 Seconds
Error Rate 0 Percent
Success Rate 1 percent
Energy Consumption 6.3241 Joules
Number of Transfers 7 Transfers
Number of Disconnects 1 Transfers

Table 15 Results of transfer experiments with 2 kbytes from location 1.

Data Value Unit

Transfer Time 22.6350 seconds
Bitrate 90.4793 Bytes/second
Latency 0.0111 Seconds/bit
Ideal number of transmissions 16 Packets
Number of transmissions 16.3333 Packets

IL222X SoC Master Thesis 5-Jan-2014
Final Report 60/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Number of receptions 16.3333 Packets
Number of retransmissions 0.3333 Packets
Tx Enabled Time 14.8774 Seconds
Rx Enabled Time 7.7576 Seconds
Error Rate 0.0196 Percent
Success Rate 0.9804 percent
Energy Consumption 6.5099 Joules
Number of Transfers 7 Transfers
Number of Disconnects 1 Transfers

Table 16 Results of transfer experiments with 2 kbytes from location 2.

Data Value Unit

Transfer Time 22.7599 seconds
Bitrate 89.9828 Bytes/second
Latency 0.0111 Seconds/bit
Ideal number of transmissions 16 Packets
Number of transmissions 16.2857 Packets
Number of receptions 16.2857 Packets
Number of retransmissions 0.2857 Packets
Tx Enabled Time 14.7559 Seconds
Rx Enabled Time 8.0039 Seconds
Error Rate 0.0168 Percent
Success Rate 0.9832 percent
Energy Consumption 6.4940 Joules
Number of Transfers 7 Transfers
Number of Disconnects 0 Transfers

Table 17 Results of transfer experiments with 2 kbytes from location 3.

Data Value Unit

Transfer Time 23.1693 seconds
Bitrate 88.3928 Bytes/second
Latency 0.0113 Seconds/bit
Ideal number of transmissions 16 Packets
Number of transmissions 16.5 Packets
Number of receptions 16.5 Packets
Number of retransmissions 0.6250 Packets
Tx Enabled Time 14.8603 Seconds
Rx Enabled Time 8.3090 Seconds
Error Rate 0.0359 Percent
Success Rate 0.9714 percent
Energy Consumption 6.5697 Joules
Number of Transfers 8 Transfers
Number of Disconnects 0 Transfers

Table 18 Results of transfer experiments with 2 kbytes from location 4.

Data Value Unit

IL222X SoC Master Thesis 5-Jan-2014
Final Report 61/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Transfer Time N/A seconds
Bitrate N/A Bytes/second
Latency N/A Seconds/bit
Ideal number of transmissions 16 Packets
Number of transmissions N/A Packets
Number of receptions N/A Packets
Number of retransmissions N/A Packets
Tx Enabled Time N/A Seconds
Rx Enabled Time N/A Seconds
Error Rate N/A Percent
Success Rate N/A percent
Energy Consumption N/A Joules
Number of Transfers 3 Transfers
Number of Disconnects 3 Transfers

Table 19 Results of transfer experiments with 2 kbytes from location 5.

Data Value Unit

Transfer Time 22.1851 seconds
Bitrate 92.3142 Bytes/second
Latency 0.0108 Seconds/bit
Ideal number of transmissions 16 Packets
Number of transmissions 16.1111 Packets
Number of receptions 16.1111 Packets
Number of retransmissions 0.1111 Packets
Tx Enabled Time 14.6391 Seconds
Rx Enabled Time 7.5460 Seconds
Error Rate 0.0065 Percent
Success Rate 0.9935 percent
Energy Consumption 6.3952 Joules
Number of Transfers 9 Transfers
Number of Disconnects 0 Transfers

Table 20 Results of transfer experiments with 2 kbytes from location 6.

Data Value Unit

Transfer Time 23.5792 seconds
Bitrate 86.8562 Bytes/second
Latency 0.0115 Seconds/bit
Ideal number of transmissions 16 Packets
Number of transmissions 16.6250 Packets
Number of receptions 16.6250 Packets
Number of retransmissions 0.6250 Packets
Tx Enabled Time 14.9375 Seconds
Rx Enabled Time 8.6418 Seconds
Error Rate 0.0344 Percent
Success Rate 0.9656 percent
Energy Consumption 6.6386 Joules

IL222X SoC Master Thesis 5-Jan-2014
Final Report 62/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Number of Transfers 8 Transfers
Number of Disconnects 0 Transfers

Table 21 Results of transfer experiments with 2 kbytes from location 7.

18.1.2 Data Collected in 434 MHz Experiments

18.1.2.1 Single Packet Transaction Experiments (127 Bytes)

Data Value Unit

Transfer Time 0.8727 seconds
Bitrate 145.5254 Bytes/second
Latency 0.0069 Seconds/bit
Ideal number of transmissions 2 Packets
Number of transmissions 2 Packets
Number of receptions 2 Packets
Number of retransmissions 0 Packets
Tx Enabled Time 0.3297 Seconds
Rx Enabled Time 0.5430 Seconds
Error Rate 0 Percent
Success Rate 1 percent
Energy Consumption 0.0584 Joules
Number of Transfers 10 Transfers
Number of Disconnects 2 Transfers

Table 22 Results of transfer experiments with 127 bytes in location 0.

Data Value Unit

Transfer Time 6.6522 seconds
Bitrate 19.0914 Bytes/second
Latency 0.0524 Seconds/bit
Ideal number of transmissions 2 Packets
Number of transmissions 4.1875 Packets
Number of receptions 4.1875 Packets
Number of retransmissions 2.1875 Packets
Tx Enabled Time 0.6610 Seconds
Rx Enabled Time 5.9912 Seconds
Error Rate 0.3346 Percent
Success Rate 0.6654 percent
Energy Consumption 0.3670 Joules
Number of Transfers 21 Transfers
Number of Disconnects 5 Transfers

Table 23 Results of transfer experiments with 127 bytes from location 1.

Data Value Unit

Transfer Time N/A seconds
Bitrate N/A Bytes/second

IL222X SoC Master Thesis 5-Jan-2014
Final Report 63/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Latency N/A Seconds/bit
Ideal number of transmissions 2 Packets
Number of transmissions N/A Packets
Number of receptions N/A Packets
Number of retransmissions N/A Packets
Tx Enabled Time N/A Seconds
Rx Enabled Time N/A Seconds
Error Rate N/A Percent
Success Rate N/A percent
Energy Consumption N/A Joules
Number of Transfers 10 Transfers
Number of Disconnects 10 Transfers

Table 24 Results of transfer experiments with 127 bytes from location 2.

Data Value Unit

Transfer Time 11.5138 seconds
Bitrate 11.0302 Bytes/second
Latency 0.0907 Seconds/bit
Ideal number of transmissions 2 Packets
Number of transmissions 7 Packets
Number of receptions 7 Packets
Number of retransmissions 5 Packets
Tx Enabled Time 1.0969 Seconds
Rx Enabled Time 10.4168 Seconds
Error Rate 0.7143 Percent
Success Rate 0.2857 percent
Energy Consumption 0.6333 Joules
Number of Transfers 7 Transfers
Number of Disconnects 6 Transfers

Table 25 Results of transfer experiments with 127 bytes from location 4.

18.1.2.2 Many Packet Transaction Experiments (2Kbytes)

Data Value Unit

Transfer Time 8.9151 seconds
Bitrate 229.7226 Bytes/second
Latency 0.0044 Seconds/bit
Ideal number of transmissions 16 Packets
Number of transmissions 16.6667 Packets
Number of receptions 16.6667 Packets
Number of retransmissions 0.6667 Packets
Tx Enabled Time 3.8002 Seconds
Rx Enabled Time 5.1149 Seconds
Error Rate 0.0326 Percent
Success Rate 0.9674 percent

IL222X SoC Master Thesis 5-Jan-2014
Final Report 64/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Energy Consumption 0.6143 Joules
Number of Transfers 16 Transfers
Number of Disconnects 1 Transfers

Table 26 Results of transfer experiments with 2 kbytes in location 0.

Data Value Unit

Transfer Time N/A seconds
Bitrate N/A Bytes/second
Latency N/A Seconds/bit
Ideal number of transmissions 16 Packets
Number of transmissions N/A Packets
Number of receptions N/A Packets
Number of retransmissions N/A Packets
Tx Enabled Time N/A Seconds
Rx Enabled Time N/A Seconds
Error Rate N/A Percent
Success Rate N/A percent
Energy Consumption N/A Joules
Number of Transfers 5 Transfers
Number of Disconnects 5 Transfers

Table 27 Results of transfer experiments with 2 kbytes from location 1.

Data Value Unit

Transfer Time N/A seconds
Bitrate N/A Bytes/second
Latency N/A Seconds/bit
Ideal number of transmissions 16 Packets
Number of transmissions N/A Packets
Number of receptions N/A Packets
Number of retransmissions N/A Packets
Tx Enabled Time N/A Seconds
Rx Enabled Time N/A Seconds
Error Rate N/A Percent
Success Rate N/A percent
Energy Consumption N/A Joules
Number of Transfers 4 Transfers
Number of Disconnects 4 Transfers

Table 28 Results of transfer experiments with 2 kbytes from location 2.

Data Value Unit

Transfer Time N/A seconds
Bitrate N/A Bytes/second
Latency N/A Seconds/bit
Ideal number of transmissions 16 Packets
Number of transmissions N/A Packets
Number of receptions N/A Packets

IL222X SoC Master Thesis 5-Jan-2014
Final Report 65/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Number of retransmissions N/A Packets
Tx Enabled Time N/A Seconds
Rx Enabled Time N/A Seconds
Error Rate N/A Percent
Success Rate N/A percent
Energy Consumption N/A Joules
Number of Transfers 4 Transfers
Number of Disconnects 4 Transfers

Table 29 Results of transfer experiments with 2 kbytes from location 4.

IL222X SoC Master Thesis 5-Jan-2014
Final Report 66/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

19 Appendix E

19.1 Schematics and PCB Designs

Figure 31 Schematic for Uhx1 Interface Card

IL222X SoC Master Thesis 5-Jan-2014
Final Report 67/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Figure 32 Schematic for Bim2A Interface Card

IL222X SoC Master Thesis 5-Jan-2014
Final Report 68/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Figure 33 Component Side of Uhx1 Interface Card PCB

IL222X SoC Master Thesis 5-Jan-2014
Final Report 69/69
KTH ICT School VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks

Alp Sayin Stockholm, Sweden

Figure 34 Solder side of Uhx1 Interface Card PCB

